Photosynthetic control of chloroplast gene expression View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-02

AUTHORS

Thomas Pfannschmidt, Anders Nilsson, John F. Allen

ABSTRACT

Redox chemistry—the transfer of electrons or hydrogen atoms—is central to energy conversion in respiration and photosynthesis. In photosynthesis in chloroplasts, two separate, light-driven reactions, termed photosystem I and photosystem II, are connected in series by a chain of electron carriers1,2,3. The redox state of one connecting electron carrier, plastoquinone, governs the distribution of absorbed light energy between photosystems I and II by controlling the phosphorylation of a mobile, light-harvesting, pigment–protein complex4,5. Here we show that the redox state of plastoquinone also controls the rate of transcription of genes encoding reaction-centre apoproteins of photosystem I and photosystem II. As a result of this control, the stoichiometry between the two photosystems changes in a way that counteracts the inefficiency produced when either photosystem limits the rate of the other. In eukaryotes, these reaction-centre proteins are encoded universally within the chloroplast. Photosynthetic control of chloroplast gene expression indicates an evolutionary explanation for this rule: the redox signal-transduction pathway can be short, the response rapid, and the control direct. More... »

PAGES

625-628

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/17624

DOI

http://dx.doi.org/10.1038/17624

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003014035


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Plant Cell Physiology and Molecular Biology, University of Bochum, Universitaetsstrasse 150, 44780, Bochum, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5570.7", 
          "name": [
            "Plant Cell Biology, Lund University, Box 7007, S-220 07, Lund, Sweden", 
            "Plant Cell Physiology and Molecular Biology, University of Bochum, Universitaetsstrasse 150, 44780, Bochum, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pfannschmidt", 
        "givenName": "Thomas", 
        "id": "sg:person.01343064767.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343064767.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Plant Cell Biology, Lund University, Box 7007, S-220 07, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Plant Cell Biology, Lund University, Box 7007, S-220 07, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nilsson", 
        "givenName": "Anders", 
        "id": "sg:person.010252552662.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252552662.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Plant Cell Biology, Lund University, Box 7007, S-220 07, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Plant Cell Biology, Lund University, Box 7007, S-220 07, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Allen", 
        "givenName": "John F.", 
        "id": "sg:person.0622303506.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622303506.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/291025a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022277827", 
          "https://doi.org/10.1038/291025a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/186136a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041410377", 
          "https://doi.org/10.1038/186136a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004380050621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017737696", 
          "https://doi.org/10.1007/s004380050621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00035446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031706193", 
          "https://doi.org/10.1007/bf00035446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02352278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018663673", 
          "https://doi.org/10.1007/bf02352278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00398669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030584689", 
          "https://doi.org/10.1007/bf00398669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/32096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043565171", 
          "https://doi.org/10.1038/32096"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-02", 
    "datePublishedReg": "1999-02-01", 
    "description": "Redox chemistry\u2014the transfer of electrons or hydrogen atoms\u2014is central to energy conversion in respiration and photosynthesis. In photosynthesis in chloroplasts, two separate, light-driven reactions, termed photosystem I and photosystem II, are connected in series by a chain of electron carriers1,2,3. The redox state of one connecting electron carrier, plastoquinone, governs the distribution of absorbed light energy between photosystems I and II by controlling the phosphorylation of a mobile, light-harvesting, pigment\u2013protein complex4,5. Here we show that the redox state of plastoquinone also controls the rate of transcription of genes encoding reaction-centre apoproteins of photosystem I and photosystem II. As a result of this control, the stoichiometry between the two photosystems changes in a way that counteracts the inefficiency produced when either photosystem limits the rate of the other. In eukaryotes, these reaction-centre proteins are encoded universally within the chloroplast. Photosynthetic control of chloroplast gene expression indicates an evolutionary explanation for this rule: the redox signal-transduction pathway can be short, the response rapid, and the control direct.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/17624", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6720", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "397"
      }
    ], 
    "keywords": [
      "chloroplast gene expression", 
      "photosystem I", 
      "photosynthetic control", 
      "gene expression", 
      "redox signal transduction pathways", 
      "reaction center apoproteins", 
      "light-driven reactions", 
      "signal transduction pathways", 
      "redox state", 
      "rate of transcription", 
      "transfer of electrons", 
      "reaction center protein", 
      "redox chemistry", 
      "photosystem changes", 
      "chain of electron", 
      "hydrogen atoms", 
      "evolutionary explanations", 
      "energy conversion", 
      "chloroplasts", 
      "photosynthesis", 
      "electron carriers", 
      "light energy", 
      "expression", 
      "eukaryotes", 
      "chemistry", 
      "electrons", 
      "transcription", 
      "photosystems", 
      "phosphorylation", 
      "genes", 
      "plastoquinone", 
      "protein", 
      "stoichiometry", 
      "atoms", 
      "reaction", 
      "pathway", 
      "respiration", 
      "apoprotein", 
      "conversion", 
      "chain", 
      "carriers", 
      "transfer", 
      "energy", 
      "control", 
      "series", 
      "state", 
      "response", 
      "changes", 
      "distribution", 
      "rate", 
      "explanation", 
      "results", 
      "way", 
      "inefficiency", 
      "rules"
    ], 
    "name": "Photosynthetic control of chloroplast gene expression", 
    "pagination": "625-628", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003014035"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/17624"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/17624", 
      "https://app.dimensions.ai/details/publication/pub.1003014035"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_316.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/17624"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/17624'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/17624'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/17624'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/17624'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      92 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/17624 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 anzsrc-for:03
4 anzsrc-for:0306
5 anzsrc-for:06
6 anzsrc-for:0601
7 anzsrc-for:0604
8 schema:author Ndb819beb244a4a00a803de5d290ac538
9 schema:citation sg:pub.10.1007/bf00035446
10 sg:pub.10.1007/bf00398669
11 sg:pub.10.1007/bf02352278
12 sg:pub.10.1007/s004380050621
13 sg:pub.10.1038/186136a0
14 sg:pub.10.1038/291025a0
15 sg:pub.10.1038/32096
16 schema:datePublished 1999-02
17 schema:datePublishedReg 1999-02-01
18 schema:description Redox chemistry—the transfer of electrons or hydrogen atoms—is central to energy conversion in respiration and photosynthesis. In photosynthesis in chloroplasts, two separate, light-driven reactions, termed photosystem I and photosystem II, are connected in series by a chain of electron carriers1,2,3. The redox state of one connecting electron carrier, plastoquinone, governs the distribution of absorbed light energy between photosystems I and II by controlling the phosphorylation of a mobile, light-harvesting, pigment–protein complex4,5. Here we show that the redox state of plastoquinone also controls the rate of transcription of genes encoding reaction-centre apoproteins of photosystem I and photosystem II. As a result of this control, the stoichiometry between the two photosystems changes in a way that counteracts the inefficiency produced when either photosystem limits the rate of the other. In eukaryotes, these reaction-centre proteins are encoded universally within the chloroplast. Photosynthetic control of chloroplast gene expression indicates an evolutionary explanation for this rule: the redox signal-transduction pathway can be short, the response rapid, and the control direct.
19 schema:genre article
20 schema:isAccessibleForFree false
21 schema:isPartOf N2caff06f0fd3471d963eaf8bc7a7b9d0
22 Nfb59cc8d45f14712bc35d95065e6241d
23 sg:journal.1018957
24 schema:keywords apoprotein
25 atoms
26 carriers
27 chain
28 chain of electron
29 changes
30 chemistry
31 chloroplast gene expression
32 chloroplasts
33 control
34 conversion
35 distribution
36 electron carriers
37 electrons
38 energy
39 energy conversion
40 eukaryotes
41 evolutionary explanations
42 explanation
43 expression
44 gene expression
45 genes
46 hydrogen atoms
47 inefficiency
48 light energy
49 light-driven reactions
50 pathway
51 phosphorylation
52 photosynthesis
53 photosynthetic control
54 photosystem I
55 photosystem changes
56 photosystems
57 plastoquinone
58 protein
59 rate
60 rate of transcription
61 reaction
62 reaction center apoproteins
63 reaction center protein
64 redox chemistry
65 redox signal transduction pathways
66 redox state
67 respiration
68 response
69 results
70 rules
71 series
72 signal transduction pathways
73 state
74 stoichiometry
75 transcription
76 transfer
77 transfer of electrons
78 way
79 schema:name Photosynthetic control of chloroplast gene expression
80 schema:pagination 625-628
81 schema:productId N16797bd738b64fab96065a1db5274453
82 N89b3d339377047058374edeeae28f94f
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003014035
84 https://doi.org/10.1038/17624
85 schema:sdDatePublished 2022-10-01T06:30
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher Necefcda03a35493f8047a7e6981d6261
88 schema:url https://doi.org/10.1038/17624
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N16797bd738b64fab96065a1db5274453 schema:name dimensions_id
93 schema:value pub.1003014035
94 rdf:type schema:PropertyValue
95 N2caff06f0fd3471d963eaf8bc7a7b9d0 schema:issueNumber 6720
96 rdf:type schema:PublicationIssue
97 N7f4844a851ed4e60a19ed4a183e1d124 rdf:first sg:person.0622303506.89
98 rdf:rest rdf:nil
99 N89b3d339377047058374edeeae28f94f schema:name doi
100 schema:value 10.1038/17624
101 rdf:type schema:PropertyValue
102 N92e2e1b955104dd5a1fe29f14bd36a4a rdf:first sg:person.010252552662.29
103 rdf:rest N7f4844a851ed4e60a19ed4a183e1d124
104 Ndb819beb244a4a00a803de5d290ac538 rdf:first sg:person.01343064767.18
105 rdf:rest N92e2e1b955104dd5a1fe29f14bd36a4a
106 Necefcda03a35493f8047a7e6981d6261 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Nfb59cc8d45f14712bc35d95065e6241d schema:volumeNumber 397
109 rdf:type schema:PublicationVolume
110 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
111 schema:name Physical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
114 schema:name Other Physical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
117 schema:name Chemical Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
120 schema:name Physical Chemistry (incl. Structural)
121 rdf:type schema:DefinedTerm
122 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
123 schema:name Biological Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
126 schema:name Biochemistry and Cell Biology
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
129 schema:name Genetics
130 rdf:type schema:DefinedTerm
131 sg:journal.1018957 schema:issn 0028-0836
132 1476-4687
133 schema:name Nature
134 schema:publisher Springer Nature
135 rdf:type schema:Periodical
136 sg:person.010252552662.29 schema:affiliation grid-institutes:grid.4514.4
137 schema:familyName Nilsson
138 schema:givenName Anders
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252552662.29
140 rdf:type schema:Person
141 sg:person.01343064767.18 schema:affiliation grid-institutes:grid.5570.7
142 schema:familyName Pfannschmidt
143 schema:givenName Thomas
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343064767.18
145 rdf:type schema:Person
146 sg:person.0622303506.89 schema:affiliation grid-institutes:grid.4514.4
147 schema:familyName Allen
148 schema:givenName John F.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622303506.89
150 rdf:type schema:Person
151 sg:pub.10.1007/bf00035446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031706193
152 https://doi.org/10.1007/bf00035446
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/bf00398669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030584689
155 https://doi.org/10.1007/bf00398669
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/bf02352278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018663673
158 https://doi.org/10.1007/bf02352278
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s004380050621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017737696
161 https://doi.org/10.1007/s004380050621
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/186136a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041410377
164 https://doi.org/10.1038/186136a0
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/291025a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022277827
167 https://doi.org/10.1038/291025a0
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/32096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043565171
170 https://doi.org/10.1038/32096
171 rdf:type schema:CreativeWork
172 grid-institutes:grid.4514.4 schema:alternateName Plant Cell Biology, Lund University, Box 7007, S-220 07, Lund, Sweden
173 schema:name Plant Cell Biology, Lund University, Box 7007, S-220 07, Lund, Sweden
174 rdf:type schema:Organization
175 grid-institutes:grid.5570.7 schema:alternateName Plant Cell Physiology and Molecular Biology, University of Bochum, Universitaetsstrasse 150, 44780, Bochum, Germany
176 schema:name Plant Cell Biology, Lund University, Box 7007, S-220 07, Lund, Sweden
177 Plant Cell Physiology and Molecular Biology, University of Bochum, Universitaetsstrasse 150, 44780, Bochum, Germany
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...