Light speed reduction to 17 metres per second in an ultracold atomic gas View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-02

AUTHORS

Lene Vestergaard Hau, S. E. Harris, Zachary Dutton, Cyrus H. Behroozi

ABSTRACT

Techniques that use quantum interference effects are being actively investigated to manipulate the optical properties of quantum systems1. One such example is electromagnetically induced transparency, a quantum effect that permits the propagation of light pulses through an otherwise opaque medium2,3,4,5. Here we report an experimental demonstration of electromagnetically induced transparency in an ultracold gas of sodium atoms, in which the optical pulses propagate at twenty million times slower than the speed of light in a vacuum. The gas is cooled to nanokelvin temperatures by laser and evaporative cooling6,7,8,9,10. The quantum interference controlling the optical properties of the medium is set up by a ‘coupling’ laser beam propagating at a right angle to the pulsed ‘probe’ beam. At nanokelvin temperatures, the variation of refractive index with probe frequency can be made very steep. In conjunction with the high atomic density, this results in the exceptionally low light speeds observed. By cooling the cloud below the transition temperature for Bose–Einstein condensation11,12,13 (causing a macroscopic population of alkali atoms in the quantum ground state of the confining potential), we observe even lower pulse propagation velocities (17 m s−1) owing to the increased atom density. We report an inferred nonlinear refractive index of 0.18 cm2 W−1 and find that the system shows exceptionally large optical nonlinearities, which are of potential fundamental and technological interest for quantum optics. More... »

PAGES

594

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/17561

DOI

http://dx.doi.org/10.1038/17561

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042899196


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "*Rowland Institute for Science, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, USA", 
            "\u2020Department of Physics, Division of Engineering, Harvard University, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hau", 
        "givenName": "Lene Vestergaard", 
        "id": "sg:person.0746731750.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746731750.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "\u2021Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harris", 
        "givenName": "S. E.", 
        "id": "sg:person.015767240164.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767240164.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "*Rowland Institute for Science, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, USA", 
            "\u2020Department of Physics, Division of Engineering, Harvard University, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dutton", 
        "givenName": "Zachary", 
        "id": "sg:person.014655467761.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014655467761.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "*Rowland Institute for Science, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, USA", 
            "\u00a7Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Behroozi", 
        "givenName": "Cyrus H.", 
        "id": "sg:person.01357116543.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357116543.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01135854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002301381", 
          "https://doi.org/10.1007/bf01135854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01135854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002301381", 
          "https://doi.org/10.1007/bf01135854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.1543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013991773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.1543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013991773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.269.5221.198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029418627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100530050263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032002039", 
          "https://doi.org/10.1007/s100530050263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039194017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039194017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.r54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044640480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.r54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044640480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051326114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051326114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051713432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051713432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1145246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057673296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.881806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058127292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.r29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060486776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.r29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060486776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.3476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060540924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.3476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060540924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.3183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.3183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.2447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.2447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.3969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.3969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.3611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.3611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.1003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.1003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.21.001936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065217100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511813993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098732024"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-02", 
    "datePublishedReg": "1999-02-01", 
    "description": "Techniques that use quantum interference effects are being actively investigated to manipulate the optical properties of quantum systems1. One such example is electromagnetically induced transparency, a quantum effect that permits the propagation of light pulses through an otherwise opaque medium2,3,4,5. Here we report an experimental demonstration of electromagnetically induced transparency in an ultracold gas of sodium atoms, in which the optical pulses propagate at twenty million times slower than the speed of light in a vacuum. The gas is cooled to nanokelvin temperatures by laser and evaporative cooling6,7,8,9,10. The quantum interference controlling the optical properties of the medium is set up by a \u2018coupling\u2019 laser beam propagating at a right angle to the pulsed \u2018probe\u2019 beam. At nanokelvin temperatures, the variation of refractive index with probe frequency can be made very steep. In conjunction with the high atomic density, this results in the exceptionally low light speeds observed. By cooling the cloud below the transition temperature for Bose\u2013Einstein condensation11,12,13 (causing a macroscopic population of alkali atoms in the quantum ground state of the confining potential), we observe even lower pulse propagation velocities (17 m s\u22121) owing to the increased atom density. We report an inferred nonlinear refractive index of 0.18 cm2 W\u22121 and find that the system shows exceptionally large optical nonlinearities, which are of potential fundamental and technological interest for quantum optics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/17561", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6720", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "397"
      }
    ], 
    "name": "Light speed reduction to 17 metres per second in an ultracold atomic\ngas", 
    "pagination": "594", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cc58588d63ab97e7e603ab8e9493b9aa48fae12785d294f981cee564a3b62882"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/17561"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042899196"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/17561", 
      "https://app.dimensions.ai/details/publication/pub.1042899196"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87104_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/17561"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/17561'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/17561'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/17561'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/17561'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/17561 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N8416159a4cba448184c244d6b05a531f
4 schema:citation sg:pub.10.1007/bf01135854
5 sg:pub.10.1007/s100530050263
6 https://doi.org/10.1017/cbo9780511813993
7 https://doi.org/10.1063/1.1145246
8 https://doi.org/10.1063/1.881806
9 https://doi.org/10.1103/physreva.46.r29
10 https://doi.org/10.1103/physreva.58.r54
11 https://doi.org/10.1103/physrevb.34.3476
12 https://doi.org/10.1103/physrevlett.61.935
13 https://doi.org/10.1103/physrevlett.73.3183
14 https://doi.org/10.1103/physrevlett.74.2447
15 https://doi.org/10.1103/physrevlett.74.666
16 https://doi.org/10.1103/physrevlett.75.3969
17 https://doi.org/10.1103/physrevlett.78.985
18 https://doi.org/10.1103/physrevlett.81.1543
19 https://doi.org/10.1103/physrevlett.81.3611
20 https://doi.org/10.1103/revmodphys.70.1003
21 https://doi.org/10.1103/revmodphys.70.685
22 https://doi.org/10.1103/revmodphys.70.707
23 https://doi.org/10.1103/revmodphys.70.721
24 https://doi.org/10.1126/science.269.5221.198
25 https://doi.org/10.1364/ol.21.001936
26 schema:datePublished 1999-02
27 schema:datePublishedReg 1999-02-01
28 schema:description Techniques that use quantum interference effects are being actively investigated to manipulate the optical properties of quantum systems1. One such example is electromagnetically induced transparency, a quantum effect that permits the propagation of light pulses through an otherwise opaque medium2,3,4,5. Here we report an experimental demonstration of electromagnetically induced transparency in an ultracold gas of sodium atoms, in which the optical pulses propagate at twenty million times slower than the speed of light in a vacuum. The gas is cooled to nanokelvin temperatures by laser and evaporative cooling6,7,8,9,10. The quantum interference controlling the optical properties of the medium is set up by a ‘coupling’ laser beam propagating at a right angle to the pulsed ‘probe’ beam. At nanokelvin temperatures, the variation of refractive index with probe frequency can be made very steep. In conjunction with the high atomic density, this results in the exceptionally low light speeds observed. By cooling the cloud below the transition temperature for Bose–Einstein condensation11,12,13 (causing a macroscopic population of alkali atoms in the quantum ground state of the confining potential), we observe even lower pulse propagation velocities (17 m s−1) owing to the increased atom density. We report an inferred nonlinear refractive index of 0.18 cm2 W−1 and find that the system shows exceptionally large optical nonlinearities, which are of potential fundamental and technological interest for quantum optics.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N7fd985869f2640e39824b0acdce1c381
33 Nd6466073954c46e78753103a0a953163
34 sg:journal.1018957
35 schema:name Light speed reduction to 17 metres per second in an ultracold atomic gas
36 schema:pagination 594
37 schema:productId N5daab27a8de848b8bda6d52ed6367d9a
38 N8c7a40c83fb84fa7877c6e1d9ac02fd6
39 Nf684a57b1e0340c2b9e7ee8387d713bb
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042899196
41 https://doi.org/10.1038/17561
42 schema:sdDatePublished 2019-04-11T12:25
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nceee2f31fc5f4b3e8b4ae5c69eefd9bc
45 schema:url https://www.nature.com/articles/17561
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N13bba7547b83404ea038dad261141bbe rdf:first sg:person.014655467761.88
50 rdf:rest N6b6f8166d8f246f78adadcef70a61d08
51 N5daab27a8de848b8bda6d52ed6367d9a schema:name doi
52 schema:value 10.1038/17561
53 rdf:type schema:PropertyValue
54 N6b6f8166d8f246f78adadcef70a61d08 rdf:first sg:person.01357116543.15
55 rdf:rest rdf:nil
56 N7fd985869f2640e39824b0acdce1c381 schema:issueNumber 6720
57 rdf:type schema:PublicationIssue
58 N8416159a4cba448184c244d6b05a531f rdf:first sg:person.0746731750.55
59 rdf:rest N861520d0266546d78378b898ef10fcc7
60 N861520d0266546d78378b898ef10fcc7 rdf:first sg:person.015767240164.25
61 rdf:rest N13bba7547b83404ea038dad261141bbe
62 N8c7a40c83fb84fa7877c6e1d9ac02fd6 schema:name dimensions_id
63 schema:value pub.1042899196
64 rdf:type schema:PropertyValue
65 Nceee2f31fc5f4b3e8b4ae5c69eefd9bc schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 Nd6466073954c46e78753103a0a953163 schema:volumeNumber 397
68 rdf:type schema:PublicationVolume
69 Nf684a57b1e0340c2b9e7ee8387d713bb schema:name readcube_id
70 schema:value cc58588d63ab97e7e603ab8e9493b9aa48fae12785d294f981cee564a3b62882
71 rdf:type schema:PropertyValue
72 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
73 schema:name Physical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
76 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
77 rdf:type schema:DefinedTerm
78 sg:journal.1018957 schema:issn 0090-0028
79 1476-4687
80 schema:name Nature
81 rdf:type schema:Periodical
82 sg:person.01357116543.15 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
83 schema:familyName Behroozi
84 schema:givenName Cyrus H.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357116543.15
86 rdf:type schema:Person
87 sg:person.014655467761.88 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
88 schema:familyName Dutton
89 schema:givenName Zachary
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014655467761.88
91 rdf:type schema:Person
92 sg:person.015767240164.25 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
93 schema:familyName Harris
94 schema:givenName S. E.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767240164.25
96 rdf:type schema:Person
97 sg:person.0746731750.55 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
98 schema:familyName Hau
99 schema:givenName Lene Vestergaard
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746731750.55
101 rdf:type schema:Person
102 sg:pub.10.1007/bf01135854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002301381
103 https://doi.org/10.1007/bf01135854
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s100530050263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032002039
106 https://doi.org/10.1007/s100530050263
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1017/cbo9780511813993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098732024
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1063/1.1145246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057673296
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1063/1.881806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058127292
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physreva.46.r29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060486776
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physreva.58.r54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044640480
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevb.34.3476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060540924
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevlett.61.935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798318
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevlett.73.3183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810021
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevlett.74.2447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810647
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevlett.74.666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811388
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevlett.75.3969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812205
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevlett.78.985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060815624
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevlett.81.1543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013991773
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevlett.81.3611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818323
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/revmodphys.70.1003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839414
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/revmodphys.70.685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051326114
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/revmodphys.70.707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039194017
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/revmodphys.70.721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051713432
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1126/science.269.5221.198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029418627
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1364/ol.21.001936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065217100
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
149 schema:name *Rowland Institute for Science, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, USA
150 §Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
151 rdf:type schema:Organization
152 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
153 schema:name *Rowland Institute for Science, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, USA
154 †Department of Physics, Division of Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
155 ‡Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, USA
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...