The Hypothesis of Chromosomal Interference View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1955-03

AUTHORS

CARL C. LINDEGREN, EEST E. SHULT

ABSTRACT

IT has been known for a long time that both chromatid and chromosomal interference produce similar effects on recombinations recovered in classical genetical (Mendelian) analysis in which single chromatids are sampled. Although deviations from a unitary coincidence are probably due either to chromatid or chromosomal interference, the classical method does not permit one to determine whether one or the other, or both, processes are effective in producing the deviations. It is strange, therefore, that chromosomal interference has been the accepted explanation of non-unitary coincidence since the very beginning of modern genetical analysis. The utility of either hypothesis in the analysis of single-chromatid experiments may be demonstrated by considering the following map: The expected frequency of double-recombinations would be 16.7 × 14.5 × 10−4, or 2.4 per cent, whereas the actual frequency is only 0.9 per cent. The accepted conclusion has been that one cross-over actually interferes with the occurrence of another, the ‘strength’ of this interference being indicated by the coincidence value (in this case, 2.67). The hypothesis of chromatid interference is, however, equally applicable if one supposes that adjacent cross-overs form four-strand double exchanges at a frequency equal to or greater than 72 per cent. More... »

PAGES

507

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/175507a0

DOI

http://dx.doi.org/10.1038/175507a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041063193

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/14370156


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosomes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "LINDEGREN", 
        "givenName": "CARL C.", 
        "id": "sg:person.075735217.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.075735217.15"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "SHULT", 
        "givenName": "EEST E.", 
        "id": "sg:person.010754352754.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754352754.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077357001", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1955-03", 
    "datePublishedReg": "1955-03-01", 
    "description": "IT has been known for a long time that both chromatid and chromosomal interference produce similar effects on recombinations recovered in classical genetical (Mendelian) analysis in which single chromatids are sampled. Although deviations from a unitary coincidence are probably due either to chromatid or chromosomal interference, the classical method does not permit one to determine whether one or the other, or both, processes are effective in producing the deviations. It is strange, therefore, that chromosomal interference has been the accepted explanation of non-unitary coincidence since the very beginning of modern genetical analysis. The utility of either hypothesis in the analysis of single-chromatid experiments may be demonstrated by considering the following map: The expected frequency of double-recombinations would be 16.7 \u00d7 14.5 \u00d7 10\u22124, or 2.4 per cent, whereas the actual frequency is only 0.9 per cent. The accepted conclusion has been that one cross-over actually interferes with the occurrence of another, the \u2018strength\u2019 of this interference being indicated by the coincidence value (in this case, 2.67). The hypothesis of chromatid interference is, however, equally applicable if one supposes that adjacent cross-overs form four-strand double exchanges at a frequency equal to or greater than 72 per cent.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/175507a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4455", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "175"
      }
    ], 
    "name": "The Hypothesis of Chromosomal Interference", 
    "pagination": "507", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c39c4eaf340f033b4164dfcdaa63e4d345e6d7d13335ff60a6896f30af980331"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "14370156"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/175507a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041063193"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/175507a0", 
      "https://app.dimensions.ai/details/publication/pub.1041063193"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/175507a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/175507a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/175507a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/175507a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/175507a0'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      21 PREDICATES      32 URIs      23 LITERALS      11 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/175507a0 schema:about N0fd670985ae14a0588132ed23950253e
2 N97a708e5d3aa4394a8b20b3e707e9b33
3 anzsrc-for:02
4 anzsrc-for:0299
5 schema:author N16ca18c8c91144e6b7bb45640e99531c
6 schema:citation https://app.dimensions.ai/details/publication/pub.1077357001
7 schema:datePublished 1955-03
8 schema:datePublishedReg 1955-03-01
9 schema:description IT has been known for a long time that both chromatid and chromosomal interference produce similar effects on recombinations recovered in classical genetical (Mendelian) analysis in which single chromatids are sampled. Although deviations from a unitary coincidence are probably due either to chromatid or chromosomal interference, the classical method does not permit one to determine whether one or the other, or both, processes are effective in producing the deviations. It is strange, therefore, that chromosomal interference has been the accepted explanation of non-unitary coincidence since the very beginning of modern genetical analysis. The utility of either hypothesis in the analysis of single-chromatid experiments may be demonstrated by considering the following map: The expected frequency of double-recombinations would be 16.7 × 14.5 × 10−4, or 2.4 per cent, whereas the actual frequency is only 0.9 per cent. The accepted conclusion has been that one cross-over actually interferes with the occurrence of another, the ‘strength’ of this interference being indicated by the coincidence value (in this case, 2.67). The hypothesis of chromatid interference is, however, equally applicable if one supposes that adjacent cross-overs form four-strand double exchanges at a frequency equal to or greater than 72 per cent.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N4c8c67cdfc7d467b86566023ad126722
14 N6b7b56e54c104e93897740ab2fc02bda
15 sg:journal.1018957
16 schema:name The Hypothesis of Chromosomal Interference
17 schema:pagination 507
18 schema:productId N3c8c5e04d6b04556acb55971acb78050
19 N86d470c187114c6aa61fd8f4514f4803
20 Nac9e940897c54aaab171c873c4fa8261
21 Nc90798b3257243639664ada5de3c249e
22 Ncdb3b028ab5142ab985463e850819734
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041063193
24 https://doi.org/10.1038/175507a0
25 schema:sdDatePublished 2019-04-10T17:19
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nc2977d402c714a36a86b3549b40960af
28 schema:url https://www.nature.com/articles/175507a0
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N0fd670985ae14a0588132ed23950253e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
33 schema:name Humans
34 rdf:type schema:DefinedTerm
35 N16ca18c8c91144e6b7bb45640e99531c rdf:first sg:person.075735217.15
36 rdf:rest N49ea5ce1087f4d61a5d5dab52196c1c7
37 N3c8c5e04d6b04556acb55971acb78050 schema:name readcube_id
38 schema:value c39c4eaf340f033b4164dfcdaa63e4d345e6d7d13335ff60a6896f30af980331
39 rdf:type schema:PropertyValue
40 N49ea5ce1087f4d61a5d5dab52196c1c7 rdf:first sg:person.010754352754.03
41 rdf:rest rdf:nil
42 N4c8c67cdfc7d467b86566023ad126722 schema:issueNumber 4455
43 rdf:type schema:PublicationIssue
44 N6b7b56e54c104e93897740ab2fc02bda schema:volumeNumber 175
45 rdf:type schema:PublicationVolume
46 N86d470c187114c6aa61fd8f4514f4803 schema:name pubmed_id
47 schema:value 14370156
48 rdf:type schema:PropertyValue
49 N97a708e5d3aa4394a8b20b3e707e9b33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
50 schema:name Chromosomes
51 rdf:type schema:DefinedTerm
52 Nac9e940897c54aaab171c873c4fa8261 schema:name nlm_unique_id
53 schema:value 0410462
54 rdf:type schema:PropertyValue
55 Nc2977d402c714a36a86b3549b40960af schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Nc90798b3257243639664ada5de3c249e schema:name dimensions_id
58 schema:value pub.1041063193
59 rdf:type schema:PropertyValue
60 Ncdb3b028ab5142ab985463e850819734 schema:name doi
61 schema:value 10.1038/175507a0
62 rdf:type schema:PropertyValue
63 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
64 schema:name Physical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
67 schema:name Other Physical Sciences
68 rdf:type schema:DefinedTerm
69 sg:journal.1018957 schema:issn 0090-0028
70 1476-4687
71 schema:name Nature
72 rdf:type schema:Periodical
73 sg:person.010754352754.03 schema:familyName SHULT
74 schema:givenName EEST E.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754352754.03
76 rdf:type schema:Person
77 sg:person.075735217.15 schema:familyName LINDEGREN
78 schema:givenName CARL C.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.075735217.15
80 rdf:type schema:Person
81 https://app.dimensions.ai/details/publication/pub.1077357001 schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...