Determination of Elastic Constants from Diffuse Reflexion of X-Rays View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1949-11

AUTHORS

G. N. RAMACHANDRAN, W. A. WOOSTER

ABSTRACT

ELASTIC constants of crystals may be determined from measurements of diffuse X-ray reflexions given by them. According to the theory of Waller1, diffuse reflexions are produced as a result of the superposition of thermal waves (into which the random thermal vibrations of atoms in the crystal can be resolved) on the ideal Bravais làttice. This dynamic stratification makes possible reflexion at angles other than the Bragg setting. The diffuse reflexion at a particular angle of incidence and of reflexion is produced by thermal waves having a definite wavelength and orientation, and from its intensity the frequency of the wave can be calculated. Combining the two data, the velocity of the wave can be obtained and, assuming that there is no dispersion of acoustical velocity, the elastic constants can be calculated from the velocities of waves propagated in different directions. More... »

PAGES

839-840

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/164839a0

DOI

http://dx.doi.org/10.1038/164839a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033615701

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15395384


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "X-Rays", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Crystallographic Laboratory, Cavendish Laboratory, Cambridge", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Crystallographic Laboratory, Cavendish Laboratory, Cambridge"
          ], 
          "type": "Organization"
        }, 
        "familyName": "RAMACHANDRAN", 
        "givenName": "G. N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Crystallographic Laboratory, Cavendish Laboratory, Cambridge", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Crystallographic Laboratory, Cavendish Laboratory, Cambridge"
          ], 
          "type": "Organization"
        }, 
        "familyName": "WOOSTER", 
        "givenName": "W. A.", 
        "type": "Person"
      }
    ], 
    "datePublished": "1949-11", 
    "datePublishedReg": "1949-11-01", 
    "description": "ELASTIC constants of crystals may be determined from measurements of diffuse X-ray reflexions given by them. According to the theory of Waller1, diffuse reflexions are produced as a result of the superposition of thermal waves (into which the random thermal vibrations of atoms in the crystal can be resolved) on the ideal Bravais l\u00e0ttice. This dynamic stratification makes possible reflexion at angles other than the Bragg setting. The diffuse reflexion at a particular angle of incidence and of reflexion is produced by thermal waves having a definite wavelength and orientation, and from its intensity the frequency of the wave can be calculated. Combining the two data, the velocity of the wave can be obtained and, assuming that there is no dispersion of acoustical velocity, the elastic constants can be calculated from the velocities of waves propagated in different directions.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/164839a0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4176", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "164"
      }
    ], 
    "keywords": [
      "thermal waves", 
      "definite wavelength", 
      "diffuse X", 
      "diffuse reflexions", 
      "acoustical velocity", 
      "elastic constants", 
      "waves", 
      "ray reflexions", 
      "particular angle", 
      "constants", 
      "wavelength", 
      "velocity of waves", 
      "rays", 
      "reflexions", 
      "angle", 
      "superposition", 
      "velocity", 
      "crystals", 
      "different directions", 
      "dispersion", 
      "measurements", 
      "intensity", 
      "theory", 
      "orientation", 
      "frequency", 
      "direction", 
      "determination", 
      "results", 
      "data", 
      "dynamic stratification", 
      "incidence", 
      "stratification", 
      "setting", 
      "theory of Waller1", 
      "Waller1", 
      "ideal Bravais l\u00e0ttice", 
      "Bravais l\u00e0ttice", 
      "l\u00e0ttice", 
      "possible reflexion", 
      "Bragg setting"
    ], 
    "name": "Determination of Elastic Constants from Diffuse Reflexion of X-Rays", 
    "pagination": "839-840", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033615701"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/164839a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15395384"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/164839a0", 
      "https://app.dimensions.ai/details/publication/pub.1033615701"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_44.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/164839a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/164839a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/164839a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/164839a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/164839a0'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      20 PREDICATES      67 URIs      59 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/164839a0 schema:about N1e34aa469df248268aabc3307a08472c
2 anzsrc-for:09
3 anzsrc-for:0915
4 schema:author Ncdbbb05acdc64368bd09678b127c4e25
5 schema:datePublished 1949-11
6 schema:datePublishedReg 1949-11-01
7 schema:description ELASTIC constants of crystals may be determined from measurements of diffuse X-ray reflexions given by them. According to the theory of Waller1, diffuse reflexions are produced as a result of the superposition of thermal waves (into which the random thermal vibrations of atoms in the crystal can be resolved) on the ideal Bravais làttice. This dynamic stratification makes possible reflexion at angles other than the Bragg setting. The diffuse reflexion at a particular angle of incidence and of reflexion is produced by thermal waves having a definite wavelength and orientation, and from its intensity the frequency of the wave can be calculated. Combining the two data, the velocity of the wave can be obtained and, assuming that there is no dispersion of acoustical velocity, the elastic constants can be calculated from the velocities of waves propagated in different directions.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf N6afd47bcd2364312a86c89914a7d5d11
11 N99d15480a9ac4d68a07ed63a85e030b8
12 sg:journal.1018957
13 schema:keywords Bragg setting
14 Bravais làttice
15 Waller1
16 acoustical velocity
17 angle
18 constants
19 crystals
20 data
21 definite wavelength
22 determination
23 different directions
24 diffuse X
25 diffuse reflexions
26 direction
27 dispersion
28 dynamic stratification
29 elastic constants
30 frequency
31 ideal Bravais làttice
32 incidence
33 intensity
34 làttice
35 measurements
36 orientation
37 particular angle
38 possible reflexion
39 ray reflexions
40 rays
41 reflexions
42 results
43 setting
44 stratification
45 superposition
46 theory
47 theory of Waller1
48 thermal waves
49 velocity
50 velocity of waves
51 wavelength
52 waves
53 schema:name Determination of Elastic Constants from Diffuse Reflexion of X-Rays
54 schema:pagination 839-840
55 schema:productId N7fca327ca0da47adae62ef7f73444ee0
56 Nca1c00141fa945a1a378e46e1a27c909
57 Nf12accb6907443a3ab034ece56023a4a
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033615701
59 https://doi.org/10.1038/164839a0
60 schema:sdDatePublished 2021-12-01T19:19
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N5e11f3ee6e45489fbadc241d86cff2c1
63 schema:url https://doi.org/10.1038/164839a0
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N1e34aa469df248268aabc3307a08472c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name X-Rays
69 rdf:type schema:DefinedTerm
70 N5e11f3ee6e45489fbadc241d86cff2c1 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N6666763aa1bb4fd5812b44877955fa3d rdf:first Nae12f44ea94249e5bd8c968df28cdbfb
73 rdf:rest rdf:nil
74 N6afd47bcd2364312a86c89914a7d5d11 schema:issueNumber 4176
75 rdf:type schema:PublicationIssue
76 N7fca327ca0da47adae62ef7f73444ee0 schema:name dimensions_id
77 schema:value pub.1033615701
78 rdf:type schema:PropertyValue
79 N99d15480a9ac4d68a07ed63a85e030b8 schema:volumeNumber 164
80 rdf:type schema:PublicationVolume
81 Nae12f44ea94249e5bd8c968df28cdbfb schema:affiliation grid-institutes:grid.5335.0
82 schema:familyName WOOSTER
83 schema:givenName W. A.
84 rdf:type schema:Person
85 Nca1c00141fa945a1a378e46e1a27c909 schema:name pubmed_id
86 schema:value 15395384
87 rdf:type schema:PropertyValue
88 Ncdbbb05acdc64368bd09678b127c4e25 rdf:first Nd0d0dbcba61c473f97a7d20fc14bfcb3
89 rdf:rest N6666763aa1bb4fd5812b44877955fa3d
90 Nd0d0dbcba61c473f97a7d20fc14bfcb3 schema:affiliation grid-institutes:grid.5335.0
91 schema:familyName RAMACHANDRAN
92 schema:givenName G. N.
93 rdf:type schema:Person
94 Nf12accb6907443a3ab034ece56023a4a schema:name doi
95 schema:value 10.1038/164839a0
96 rdf:type schema:PropertyValue
97 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
98 schema:name Engineering
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
101 schema:name Interdisciplinary Engineering
102 rdf:type schema:DefinedTerm
103 sg:journal.1018957 schema:issn 0028-0836
104 1476-4687
105 schema:name Nature
106 schema:publisher Springer Nature
107 rdf:type schema:Periodical
108 grid-institutes:grid.5335.0 schema:alternateName Crystallographic Laboratory, Cavendish Laboratory, Cambridge
109 schema:name Crystallographic Laboratory, Cavendish Laboratory, Cambridge
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...