Migration of plutonium in ground water at the Nevada Test Site View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-01

AUTHORS

A. B. Kersting, D. W. Efurd, D. L. Finnegan, D. J. Rokop, D. K. Smith, J. L. Thompson

ABSTRACT

Mobile colloids—suspended particles in the submicrometre size range—are known to occur naturally in ground water1, 2 and have the potential to enhance transport of non-soluble contaminants through sorption3. The possible implications of this transport mechanism are of particular concern in the context of radionuclide transport. Significant quantities of the element plutonium have been introduced into the environment as a result of nuclear weapons testing and production, and nuclear power-plant accidents. Moreover, many countries anticipate storing nuclear waste underground. It has been argued that plutonium introduced into the subsurface environment is relatively immobile owing to its low solubility in ground water4 and strong sorption onto rocks5. Nonetheless, colloid-facilitated transport of radionuclides has been implicated in field observations6, 7, but unequivocal evidence of subsurface transport is lacking3, 8, 9. Moreover, colloid filtration models predict transport over a limited distance resulting in a discrepancy between observed and modelled behaviour3. Here we report that the radionuclides observed in groundwater samples from aquifers at the Nevada Test Site, where hundreds of underground nuclear tests were conducted, are associated with the colloidal fraction of the ground water. The 240 Pu/239 Pu isotope ratio of the samples establishes that an underground nuclear test 1.3 km north of the sample site is the origin of the plutonium. We argue that colloidal groundwater migration must have played an important role in transporting the plutonium. Models that either predict limited transport or do not allow for colloid-facilitated transport may thus significantly underestimate the extent of radionuclide migration. More... »

PAGES

56-59

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/16231

DOI

http://dx.doi.org/10.1038/16231

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015571654


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lawrence Livermore National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.250008.f", 
          "name": [
            "*Isotope Sciences Division, PO Box 808, L-231, Lawrence Livermore National Laboratory, Livermore, California 94550, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kersting", 
        "givenName": "A. B.", 
        "id": "sg:person.0733273363.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733273363.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "\u2020Chemical Science and Technology Division, MS J514, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Efurd", 
        "givenName": "D. W.", 
        "id": "sg:person.013127234623.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013127234623.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "\u2020Chemical Science and Technology Division, MS J514, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Finnegan", 
        "givenName": "D. L.", 
        "id": "sg:person.0614443024.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614443024.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "\u2020Chemical Science and Technology Division, MS J514, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rokop", 
        "givenName": "D. J.", 
        "id": "sg:person.011570352774.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011570352774.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Livermore National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.250008.f", 
          "name": [
            "*Isotope Sciences Division, PO Box 808, L-231, Lawrence Livermore National Laboratory, Livermore, California 94550, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "D. K.", 
        "id": "sg:person.016102753457.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016102753457.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "\u2020Chemical Science and Technology Division, MS J514, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thompson", 
        "givenName": "J. L.", 
        "id": "sg:person.011516664227.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516664227.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1524/ract.1988.4445.1.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003345893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7037(92)90053-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005472656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7037(92)90053-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005472656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7037(89)90003-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008425441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7037(89)90003-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008425441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-7757(95)03384-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018059509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0883-2927(88)90025-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021636159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0883-2927(88)90025-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021636159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1524/ract.1995.69.3.157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029753713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-1176(85)85032-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040387833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es00027a023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055485360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es00072a012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055487411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es960817l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055518252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es960817l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055518252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.256.5057.649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062543903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1346/ccmn.1987.0350202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065019414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1346/ccmn.1987.0350202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065019414", 
          "https://doi.org/10.1346/ccmn.1987.0350202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1524/ract.1992.5859.1.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067646505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1524/ract.1995.7071.s1.377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067646800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1524/ract.1996.73.4.177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067646865"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-01", 
    "datePublishedReg": "1999-01-01", 
    "description": "Mobile colloids\u2014suspended particles in the submicrometre size range\u2014are known to occur naturally in ground water1, 2 and have the potential to enhance transport of non-soluble contaminants through sorption3. The possible implications of this transport mechanism are of particular concern in the context of radionuclide transport. Significant quantities of the element plutonium have been introduced into the environment as a result of nuclear weapons testing and production, and nuclear power-plant accidents. Moreover, many countries anticipate storing nuclear waste underground. It has been argued that plutonium introduced into the subsurface environment is relatively immobile owing to its low solubility in ground water4 and strong sorption onto rocks5. Nonetheless, colloid-facilitated transport of radionuclides has been implicated in field observations6, 7, but unequivocal evidence of subsurface transport is lacking3, 8, 9. Moreover, colloid filtration models predict transport over a limited distance resulting in a discrepancy between observed and modelled behaviour3. Here we report that the radionuclides observed in groundwater samples from aquifers at the Nevada Test Site, where hundreds of underground nuclear tests were conducted, are associated with the colloidal fraction of the ground water. The 240 Pu/239 Pu isotope ratio of the samples establishes that an underground nuclear test 1.3 km north of the sample site is the origin of the plutonium. We argue that colloidal groundwater migration must have played an important role in transporting the plutonium. Models that either predict limited transport or do not allow for colloid-facilitated transport may thus significantly underestimate the extent of radionuclide migration.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/16231", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6714", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "397"
      }
    ], 
    "name": "Migration of plutonium in ground water at the Nevada Test Site", 
    "pagination": "56-59", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4a31028d996d63f9eb15a5997afa66b500a3cfc9a968b1af9ccbd9b991484e17"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/16231"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015571654"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/16231", 
      "https://app.dimensions.ai/details/publication/pub.1015571654"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000584.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/16231"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/16231'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/16231'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/16231'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/16231'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/16231 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N61b3b7fbf6a14faa94bd2efedd6895b5
4 schema:citation sg:pub.10.1346/ccmn.1987.0350202
5 https://doi.org/10.1016/0016-7037(89)90003-3
6 https://doi.org/10.1016/0016-7037(92)90053-l
7 https://doi.org/10.1016/0168-1176(85)85032-1
8 https://doi.org/10.1016/0883-2927(88)90025-x
9 https://doi.org/10.1016/0927-7757(95)03384-x
10 https://doi.org/10.1021/es00027a023
11 https://doi.org/10.1021/es00072a012
12 https://doi.org/10.1021/es960817l
13 https://doi.org/10.1126/science.256.5057.649
14 https://doi.org/10.1346/ccmn.1987.0350202
15 https://doi.org/10.1524/ract.1988.4445.1.111
16 https://doi.org/10.1524/ract.1992.5859.1.53
17 https://doi.org/10.1524/ract.1995.69.3.157
18 https://doi.org/10.1524/ract.1995.7071.s1.377
19 https://doi.org/10.1524/ract.1996.73.4.177
20 schema:datePublished 1999-01
21 schema:datePublishedReg 1999-01-01
22 schema:description Mobile colloids—suspended particles in the submicrometre size range—are known to occur naturally in ground water1, 2 and have the potential to enhance transport of non-soluble contaminants through sorption3. The possible implications of this transport mechanism are of particular concern in the context of radionuclide transport. Significant quantities of the element plutonium have been introduced into the environment as a result of nuclear weapons testing and production, and nuclear power-plant accidents. Moreover, many countries anticipate storing nuclear waste underground. It has been argued that plutonium introduced into the subsurface environment is relatively immobile owing to its low solubility in ground water4 and strong sorption onto rocks5. Nonetheless, colloid-facilitated transport of radionuclides has been implicated in field observations6, 7, but unequivocal evidence of subsurface transport is lacking3, 8, 9. Moreover, colloid filtration models predict transport over a limited distance resulting in a discrepancy between observed and modelled behaviour3. Here we report that the radionuclides observed in groundwater samples from aquifers at the Nevada Test Site, where hundreds of underground nuclear tests were conducted, are associated with the colloidal fraction of the ground water. The 240 Pu/239 Pu isotope ratio of the samples establishes that an underground nuclear test 1.3 km north of the sample site is the origin of the plutonium. We argue that colloidal groundwater migration must have played an important role in transporting the plutonium. Models that either predict limited transport or do not allow for colloid-facilitated transport may thus significantly underestimate the extent of radionuclide migration.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf Ndb4f2450d6b2425b9264c9a438dbf2d6
27 Ne61cfafa5c784ddcb4a070cd73d2ad15
28 sg:journal.1018957
29 schema:name Migration of plutonium in ground water at the Nevada Test Site
30 schema:pagination 56-59
31 schema:productId N1f54466caf004d88a5904545a0e5fe54
32 N43b3162ec2a040e79010acfec36d6c46
33 N8d481a2e8ccc418e9c6b64e1f8672489
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015571654
35 https://doi.org/10.1038/16231
36 schema:sdDatePublished 2019-04-10T16:53
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N93bc245f7b354d0ab6f4791b1c6a5cf3
39 schema:url http://www.nature.com/articles/16231
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N1f54466caf004d88a5904545a0e5fe54 schema:name doi
44 schema:value 10.1038/16231
45 rdf:type schema:PropertyValue
46 N289e66ed31fa42de995caa2d9f81675c rdf:first sg:person.011570352774.80
47 rdf:rest N5a51a56aad3c43abb8c1b487966f9486
48 N345f28e5b40d4c9994f10093bcf1b332 rdf:first sg:person.013127234623.44
49 rdf:rest N51cf331e919144549a3ff9bfb8b5c5d6
50 N43b3162ec2a040e79010acfec36d6c46 schema:name dimensions_id
51 schema:value pub.1015571654
52 rdf:type schema:PropertyValue
53 N51cf331e919144549a3ff9bfb8b5c5d6 rdf:first sg:person.0614443024.46
54 rdf:rest N289e66ed31fa42de995caa2d9f81675c
55 N5a51a56aad3c43abb8c1b487966f9486 rdf:first sg:person.016102753457.53
56 rdf:rest Na09656bb78844b9e8851d0a63cec9720
57 N61b3b7fbf6a14faa94bd2efedd6895b5 rdf:first sg:person.0733273363.52
58 rdf:rest N345f28e5b40d4c9994f10093bcf1b332
59 N8d481a2e8ccc418e9c6b64e1f8672489 schema:name readcube_id
60 schema:value 4a31028d996d63f9eb15a5997afa66b500a3cfc9a968b1af9ccbd9b991484e17
61 rdf:type schema:PropertyValue
62 N93bc245f7b354d0ab6f4791b1c6a5cf3 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Na09656bb78844b9e8851d0a63cec9720 rdf:first sg:person.011516664227.38
65 rdf:rest rdf:nil
66 Ndb4f2450d6b2425b9264c9a438dbf2d6 schema:volumeNumber 397
67 rdf:type schema:PublicationVolume
68 Ne61cfafa5c784ddcb4a070cd73d2ad15 schema:issueNumber 6714
69 rdf:type schema:PublicationIssue
70 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
71 schema:name Earth Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
74 schema:name Physical Geography and Environmental Geoscience
75 rdf:type schema:DefinedTerm
76 sg:journal.1018957 schema:issn 0090-0028
77 1476-4687
78 schema:name Nature
79 rdf:type schema:Periodical
80 sg:person.011516664227.38 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
81 schema:familyName Thompson
82 schema:givenName J. L.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516664227.38
84 rdf:type schema:Person
85 sg:person.011570352774.80 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
86 schema:familyName Rokop
87 schema:givenName D. J.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011570352774.80
89 rdf:type schema:Person
90 sg:person.013127234623.44 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
91 schema:familyName Efurd
92 schema:givenName D. W.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013127234623.44
94 rdf:type schema:Person
95 sg:person.016102753457.53 schema:affiliation https://www.grid.ac/institutes/grid.250008.f
96 schema:familyName Smith
97 schema:givenName D. K.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016102753457.53
99 rdf:type schema:Person
100 sg:person.0614443024.46 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
101 schema:familyName Finnegan
102 schema:givenName D. L.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614443024.46
104 rdf:type schema:Person
105 sg:person.0733273363.52 schema:affiliation https://www.grid.ac/institutes/grid.250008.f
106 schema:familyName Kersting
107 schema:givenName A. B.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733273363.52
109 rdf:type schema:Person
110 sg:pub.10.1346/ccmn.1987.0350202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065019414
111 https://doi.org/10.1346/ccmn.1987.0350202
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0016-7037(89)90003-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008425441
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0016-7037(92)90053-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1005472656
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0168-1176(85)85032-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040387833
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0883-2927(88)90025-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021636159
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0927-7757(95)03384-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018059509
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1021/es00027a023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055485360
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1021/es00072a012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055487411
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1021/es960817l schema:sameAs https://app.dimensions.ai/details/publication/pub.1055518252
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1126/science.256.5057.649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062543903
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1346/ccmn.1987.0350202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065019414
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1524/ract.1988.4445.1.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003345893
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1524/ract.1992.5859.1.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067646505
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1524/ract.1995.69.3.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029753713
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1524/ract.1995.7071.s1.377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067646800
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1524/ract.1996.73.4.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067646865
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.148313.c schema:alternateName Los Alamos National Laboratory
144 schema:name †Chemical Science and Technology Division, MS J514, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
145 rdf:type schema:Organization
146 https://www.grid.ac/institutes/grid.250008.f schema:alternateName Lawrence Livermore National Laboratory
147 schema:name *Isotope Sciences Division, PO Box 808, L-231, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...