Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-01

AUTHORS

R. Merkel, P. Nassoy, A. Leung, K. Ritchie, E. Evans

ABSTRACT

Atomic force microscopy (AFM) has been used to measure the strength of bonds between biological receptor molecules and their ligands. But for weak noncovalent bonds, a dynamic spectrum of bond strengths is predicted as the loading rate is altered, with the measured strength being governed by the prominent barriers traversed in the energy landscape along the force-driven bond-dissociation pathway. In other words, the pioneering early AFM measurements represent only a single point in a continuous spectrum of bond strengths, because theory predicts that these will depend on the rate at which the load is applied. Here we report the strength spectra for the bonds between streptavidin (or avidin) and biotins-the prototype of receptor-ligand interactions used in earlier AFM studies, and which have been modelled by molecular dynamics. We have probed bond formation over six orders of magnitude in loading rate, and find that the bond survival time diminished from about 1 min to 0.001 s with increasing loading rate over this range. The bond strength, meanwhile, increased from about 5 pN to 170 pN. Thus, although they are among the strongest noncovalent linkages in biology (affinity of 10(13) to 10(15) M(-1)), these bonds in fact appear strong or weak depending on how fast they are loaded. We are also able to relate the activation barriers derived from our strength spectra to the shape of the energy landscape derived from simulations of the biotin-avidin complex. More... »

PAGES

50

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/16219

DOI

http://dx.doi.org/10.1038/16219

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027607173

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9892352


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biotin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Atomic Force", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Streptavidin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "*Departments of Physics and Pathology, University of British Columbia, Vancouver, British Columbia , Canada V6T 1Z1", 
            "\u2020Physikdepartment der Technischen Universitt Mnchen, 85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Merkel", 
        "givenName": "R.", 
        "id": "sg:person.01315627360.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315627360.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute Curie", 
          "id": "https://www.grid.ac/institutes/grid.418596.7", 
          "name": [
            "*Departments of Physics and Pathology, University of British Columbia, Vancouver, British Columbia , Canada V6T 1Z1", 
            "\u2021Physico-Chemie de l'Institut Curie , 75231 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nassoy", 
        "givenName": "P.", 
        "id": "sg:person.0672050461.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672050461.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "*Departments of Physics and Pathology, University of British Columbia, Vancouver, British Columbia , Canada V6T 1Z1"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leung", 
        "givenName": "A.", 
        "id": "sg:person.01313575530.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313575530.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "*Departments of Physics and Pathology, University of British Columbia, Vancouver, British Columbia , Canada V6T 1Z1"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ritchie", 
        "givenName": "K.", 
        "id": "sg:person.0672514542.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672514542.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "*Departments of Physics and Pathology, University of British Columbia, Vancouver, British Columbia , Canada V6T 1Z1", 
            "\u00a7Biomedical Engineering, Boston University , Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Evans", 
        "givenName": "E.", 
        "id": "sg:person.014645507452.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014645507452.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0006-3495(96)79487-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004775273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-8914(40)90098-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008146861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015754186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015754186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/27873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016333211", 
          "https://doi.org/10.1038/27873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/27873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016333211", 
          "https://doi.org/10.1038/27873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/374539a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023907545", 
          "https://doi.org/10.1038/374539a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(97)78804-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026339060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(97)78802-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031870388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.90.11.5076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035472012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.8.3477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035873313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036099572", 
          "https://doi.org/10.1038/30270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036099572", 
          "https://doi.org/10.1038/30270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560070403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043597961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560070403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043597961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-3233(08)60411-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047578171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560060604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048933027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(95)80441-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050664864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00148a003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055709524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la00014a003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056137183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.62.251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.62.251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.271.5251.997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062552264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.276.5315.1109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062556719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2911722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062573422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2928794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062574321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.347575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062616182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7939660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062650679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8153628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062652966"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-01", 
    "datePublishedReg": "1999-01-01", 
    "description": "Atomic force microscopy (AFM) has been used to measure the strength of bonds between biological receptor molecules and their ligands. But for weak noncovalent bonds, a dynamic spectrum of bond strengths is predicted as the loading rate is altered, with the measured strength being governed by the prominent barriers traversed in the energy landscape along the force-driven bond-dissociation pathway. In other words, the pioneering early AFM measurements represent only a single point in a continuous spectrum of bond strengths, because theory predicts that these will depend on the rate at which the load is applied. Here we report the strength spectra for the bonds between streptavidin (or avidin) and biotins-the prototype of receptor-ligand interactions used in earlier AFM studies, and which have been modelled by molecular dynamics. We have probed bond formation over six orders of magnitude in loading rate, and find that the bond survival time diminished from about 1 min to 0.001 s with increasing loading rate over this range. The bond strength, meanwhile, increased from about 5 pN to 170 pN. Thus, although they are among the strongest noncovalent linkages in biology (affinity of 10(13) to 10(15) M(-1)), these bonds in fact appear strong or weak depending on how fast they are loaded. We are also able to relate the activation barriers derived from our strength spectra to the shape of the energy landscape derived from simulations of the biotin-avidin complex.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/16219", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6714", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "397"
      }
    ], 
    "name": "Energy landscapes of receptor\u2013ligand bonds explored with dynamic\nforce spectroscopy", 
    "pagination": "50", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8383c58061d015a66176ebc70d70077e64b11a2638924a2250598aab87b6dbd4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9892352"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/16219"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027607173"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/16219", 
      "https://app.dimensions.ai/details/publication/pub.1027607173"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000588.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/16219"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/16219'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/16219'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/16219'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/16219'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      57 URIs      25 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/16219 schema:about N2f37059ef9de407da0727d8d14d54015
2 N3e6026dbb85e4cb3a3ab1871945f78c0
3 N5a8819c86bfe4fcc991e12b0313bc168
4 N7840f3a8f0334dada728506c4d5d4152
5 anzsrc-for:03
6 anzsrc-for:0306
7 schema:author N40ad97df59c04f9184b7ffc7caff0fa6
8 schema:citation sg:pub.10.1038/27873
9 sg:pub.10.1038/30270
10 sg:pub.10.1038/374539a0
11 https://doi.org/10.1002/pro.5560060604
12 https://doi.org/10.1002/pro.5560070403
13 https://doi.org/10.1016/s0006-3495(95)80441-8
14 https://doi.org/10.1016/s0006-3495(96)79487-0
15 https://doi.org/10.1016/s0006-3495(97)78802-7
16 https://doi.org/10.1016/s0006-3495(97)78804-0
17 https://doi.org/10.1016/s0031-8914(40)90098-2
18 https://doi.org/10.1016/s0065-3233(08)60411-8
19 https://doi.org/10.1021/ja00148a003
20 https://doi.org/10.1021/la00014a003
21 https://doi.org/10.1073/pnas.90.11.5076
22 https://doi.org/10.1073/pnas.93.8.3477
23 https://doi.org/10.1103/physrevlett.56.930
24 https://doi.org/10.1103/revmodphys.62.251
25 https://doi.org/10.1126/science.271.5251.997
26 https://doi.org/10.1126/science.276.5315.1109
27 https://doi.org/10.1126/science.2911722
28 https://doi.org/10.1126/science.2928794
29 https://doi.org/10.1126/science.347575
30 https://doi.org/10.1126/science.7939660
31 https://doi.org/10.1126/science.8153628
32 schema:datePublished 1999-01
33 schema:datePublishedReg 1999-01-01
34 schema:description Atomic force microscopy (AFM) has been used to measure the strength of bonds between biological receptor molecules and their ligands. But for weak noncovalent bonds, a dynamic spectrum of bond strengths is predicted as the loading rate is altered, with the measured strength being governed by the prominent barriers traversed in the energy landscape along the force-driven bond-dissociation pathway. In other words, the pioneering early AFM measurements represent only a single point in a continuous spectrum of bond strengths, because theory predicts that these will depend on the rate at which the load is applied. Here we report the strength spectra for the bonds between streptavidin (or avidin) and biotins-the prototype of receptor-ligand interactions used in earlier AFM studies, and which have been modelled by molecular dynamics. We have probed bond formation over six orders of magnitude in loading rate, and find that the bond survival time diminished from about 1 min to 0.001 s with increasing loading rate over this range. The bond strength, meanwhile, increased from about 5 pN to 170 pN. Thus, although they are among the strongest noncovalent linkages in biology (affinity of 10(13) to 10(15) M(-1)), these bonds in fact appear strong or weak depending on how fast they are loaded. We are also able to relate the activation barriers derived from our strength spectra to the shape of the energy landscape derived from simulations of the biotin-avidin complex.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N6dcca7bc633f4249b9703ee7f740055b
39 Nff94536bbb3948a7b00ffa1ff9bad4eb
40 sg:journal.1018957
41 schema:name Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy
42 schema:pagination 50
43 schema:productId N464de3996c7d44e890d88e6593b186d8
44 N93fbb1326b1844548b35b2d95f28076e
45 Na7e82c3e08b3450485d41a48b4002536
46 Naf5b7eeaf5fe4ecd8087cb9275a8043a
47 Nf2aa9566101e470aa07f62497d5ffd06
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027607173
49 https://doi.org/10.1038/16219
50 schema:sdDatePublished 2019-04-11T00:28
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N5f8988977fa94551b17f77e1071e74db
53 schema:url https://www.nature.com/articles/16219
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N1e05045f07df4184ba0706cf17f383b6 rdf:first sg:person.0672050461.38
58 rdf:rest Nf6aa3fda7a9f420cbf38a10459ab9525
59 N2f37059ef9de407da0727d8d14d54015 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Biotin
61 rdf:type schema:DefinedTerm
62 N3e6026dbb85e4cb3a3ab1871945f78c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Microscopy, Atomic Force
64 rdf:type schema:DefinedTerm
65 N40ad97df59c04f9184b7ffc7caff0fa6 rdf:first sg:person.01315627360.63
66 rdf:rest N1e05045f07df4184ba0706cf17f383b6
67 N464de3996c7d44e890d88e6593b186d8 schema:name dimensions_id
68 schema:value pub.1027607173
69 rdf:type schema:PropertyValue
70 N476467aa512f4d0d954b0cb28538ce8c rdf:first sg:person.0672514542.89
71 rdf:rest N899862c1dea94e10807a19a0e8c4790f
72 N5a8819c86bfe4fcc991e12b0313bc168 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Protein Binding
74 rdf:type schema:DefinedTerm
75 N5f8988977fa94551b17f77e1071e74db schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N6dcca7bc633f4249b9703ee7f740055b schema:volumeNumber 397
78 rdf:type schema:PublicationVolume
79 N7840f3a8f0334dada728506c4d5d4152 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Streptavidin
81 rdf:type schema:DefinedTerm
82 N899862c1dea94e10807a19a0e8c4790f rdf:first sg:person.014645507452.22
83 rdf:rest rdf:nil
84 N93fbb1326b1844548b35b2d95f28076e schema:name pubmed_id
85 schema:value 9892352
86 rdf:type schema:PropertyValue
87 Na7e82c3e08b3450485d41a48b4002536 schema:name doi
88 schema:value 10.1038/16219
89 rdf:type schema:PropertyValue
90 Naf5b7eeaf5fe4ecd8087cb9275a8043a schema:name nlm_unique_id
91 schema:value 0410462
92 rdf:type schema:PropertyValue
93 Nf2aa9566101e470aa07f62497d5ffd06 schema:name readcube_id
94 schema:value 8383c58061d015a66176ebc70d70077e64b11a2638924a2250598aab87b6dbd4
95 rdf:type schema:PropertyValue
96 Nf6aa3fda7a9f420cbf38a10459ab9525 rdf:first sg:person.01313575530.73
97 rdf:rest N476467aa512f4d0d954b0cb28538ce8c
98 Nff94536bbb3948a7b00ffa1ff9bad4eb schema:issueNumber 6714
99 rdf:type schema:PublicationIssue
100 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
101 schema:name Chemical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
104 schema:name Physical Chemistry (incl. Structural)
105 rdf:type schema:DefinedTerm
106 sg:journal.1018957 schema:issn 0090-0028
107 1476-4687
108 schema:name Nature
109 rdf:type schema:Periodical
110 sg:person.01313575530.73 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
111 schema:familyName Leung
112 schema:givenName A.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313575530.73
114 rdf:type schema:Person
115 sg:person.01315627360.63 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
116 schema:familyName Merkel
117 schema:givenName R.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315627360.63
119 rdf:type schema:Person
120 sg:person.014645507452.22 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
121 schema:familyName Evans
122 schema:givenName E.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014645507452.22
124 rdf:type schema:Person
125 sg:person.0672050461.38 schema:affiliation https://www.grid.ac/institutes/grid.418596.7
126 schema:familyName Nassoy
127 schema:givenName P.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672050461.38
129 rdf:type schema:Person
130 sg:person.0672514542.89 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
131 schema:familyName Ritchie
132 schema:givenName K.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672514542.89
134 rdf:type schema:Person
135 sg:pub.10.1038/27873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016333211
136 https://doi.org/10.1038/27873
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/30270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036099572
139 https://doi.org/10.1038/30270
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/374539a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023907545
142 https://doi.org/10.1038/374539a0
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/pro.5560060604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048933027
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/pro.5560070403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043597961
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0006-3495(95)80441-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050664864
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0006-3495(96)79487-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004775273
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0006-3495(97)78802-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031870388
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/s0006-3495(97)78804-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026339060
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0031-8914(40)90098-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008146861
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0065-3233(08)60411-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047578171
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/ja00148a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055709524
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/la00014a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056137183
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1073/pnas.90.11.5076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035472012
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1073/pnas.93.8.3477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035873313
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.56.930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015754186
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/revmodphys.62.251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839195
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1126/science.271.5251.997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062552264
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1126/science.276.5315.1109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062556719
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1126/science.2911722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062573422
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1126/science.2928794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062574321
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1126/science.347575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062616182
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1126/science.7939660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062650679
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.8153628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062652966
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.17091.3e schema:alternateName University of British Columbia
187 schema:name *Departments of Physics and Pathology, University of British Columbia, Vancouver, British Columbia , Canada V6T 1Z1
188 †Physikdepartment der Technischen Universitt Mnchen, 85748 Garching, Germany
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
191 schema:name *Departments of Physics and Pathology, University of British Columbia, Vancouver, British Columbia , Canada V6T 1Z1
192 §Biomedical Engineering, Boston University , Boston, Massachusetts 02215, USA
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.418596.7 schema:alternateName Institute Curie
195 schema:name *Departments of Physics and Pathology, University of British Columbia, Vancouver, British Columbia , Canada V6T 1Z1
196 ‡Physico-Chemie de l'Institut Curie , 75231 Paris, France
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...