1999-01
AUTHORS ABSTRACTHigh-level cirrus clouds can evolve1, 2 from the condensation trails of aircraft, which form as the mixture of warm, humid exhaust gases and colder, drier air exceeds water saturation3. In addition, the particles in exhaust plumes from aircraft may allow ice nucleation at lower supersaturations than those required under natural conditions4. This mechanism is sensitive to environmental conditions, but may occur downstream of the exhaust aerosol source regions. Here I show that cirrus clouds increased in occurrence and coverage in the main air-traffic flight corridors between 1982 and 1991. More... »
PAGES30-31
http://scigraph.springernature.com/pub.10.1038/16169
DOIhttp://dx.doi.org/10.1038/16169
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1001078950
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0901",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Aerospace Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratoire d'Optique Atmosph\u00e9rique, U.F.R. de Physique, Universit\u00e9 de Lille-I, 59655, Villeneuve d'Ascq Cedex, France",
"id": "http://www.grid.ac/institutes/grid.497265.b",
"name": [
"Laboratoire d'Optique Atmosph\u00e9rique, U.F.R. de Physique, Universit\u00e9 de Lille-I, 59655, Villeneuve d'Ascq Cedex, France"
],
"type": "Organization"
},
"familyName": "Boucher",
"givenName": "Olivier",
"id": "sg:person.01301253676.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301253676.11"
],
"type": "Person"
}
],
"datePublished": "1999-01",
"datePublishedReg": "1999-01-01",
"description": "High-level cirrus clouds can evolve1, 2 from the condensation trails of aircraft, which form as the mixture of warm, humid exhaust gases and colder, drier air exceeds water saturation3. In addition, the particles in exhaust plumes from aircraft may allow ice nucleation at lower supersaturations than those required under natural conditions4. This mechanism is sensitive to environmental conditions, but may occur downstream of the exhaust aerosol source regions. Here I show that cirrus clouds increased in occurrence and coverage in the main air-traffic flight corridors between 1982 and 1991.",
"genre": "article",
"id": "sg:pub.10.1038/16169",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1018957",
"issn": [
"0028-0836",
"1476-4687"
],
"name": "Nature",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6714",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "397"
}
],
"keywords": [
"cirrus clouds",
"high\u2010level cirrus clouds",
"aerosol source regions",
"source region",
"cirrus cloudiness",
"condensation trails",
"ice nucleation",
"flight corridor",
"dry air",
"exhaust plume",
"environmental conditions",
"cloud",
"low supersaturation",
"air traffic",
"cloudiness",
"plume",
"aircraft",
"exhaust gases",
"supersaturation",
"corridor",
"gases",
"occurrence",
"downstream",
"region",
"air",
"particles",
"nucleation",
"coverage",
"conditions",
"trails",
"mixture",
"traffic",
"addition",
"mechanism"
],
"name": "Air traffic may increase cirrus cloudiness",
"pagination": "30-31",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1001078950"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/16169"
]
}
],
"sameAs": [
"https://doi.org/10.1038/16169",
"https://app.dimensions.ai/details/publication/pub.1001078950"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:47",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_316.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/16169"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/16169'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/16169'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/16169'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/16169'
This table displays all metadata directly associated to this object as RDF triples.
92 TRIPLES
21 PREDICATES
60 URIs
52 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1038/16169 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0901 |
3 | ″ | schema:author | N097378d917594d778b395b9983678161 |
4 | ″ | schema:datePublished | 1999-01 |
5 | ″ | schema:datePublishedReg | 1999-01-01 |
6 | ″ | schema:description | High-level cirrus clouds can evolve1, 2 from the condensation trails of aircraft, which form as the mixture of warm, humid exhaust gases and colder, drier air exceeds water saturation3. In addition, the particles in exhaust plumes from aircraft may allow ice nucleation at lower supersaturations than those required under natural conditions4. This mechanism is sensitive to environmental conditions, but may occur downstream of the exhaust aerosol source regions. Here I show that cirrus clouds increased in occurrence and coverage in the main air-traffic flight corridors between 1982 and 1991. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N283a2a83efb54aa18251952be13f24c0 |
11 | ″ | ″ | N852b3ec84336479ab25a1fe393466314 |
12 | ″ | ″ | sg:journal.1018957 |
13 | ″ | schema:keywords | addition |
14 | ″ | ″ | aerosol source regions |
15 | ″ | ″ | air |
16 | ″ | ″ | air traffic |
17 | ″ | ″ | aircraft |
18 | ″ | ″ | cirrus cloudiness |
19 | ″ | ″ | cirrus clouds |
20 | ″ | ″ | cloud |
21 | ″ | ″ | cloudiness |
22 | ″ | ″ | condensation trails |
23 | ″ | ″ | conditions |
24 | ″ | ″ | corridor |
25 | ″ | ″ | coverage |
26 | ″ | ″ | downstream |
27 | ″ | ″ | dry air |
28 | ″ | ″ | environmental conditions |
29 | ″ | ″ | exhaust gases |
30 | ″ | ″ | exhaust plume |
31 | ″ | ″ | flight corridor |
32 | ″ | ″ | gases |
33 | ″ | ″ | high‐level cirrus clouds |
34 | ″ | ″ | ice nucleation |
35 | ″ | ″ | low supersaturation |
36 | ″ | ″ | mechanism |
37 | ″ | ″ | mixture |
38 | ″ | ″ | nucleation |
39 | ″ | ″ | occurrence |
40 | ″ | ″ | particles |
41 | ″ | ″ | plume |
42 | ″ | ″ | region |
43 | ″ | ″ | source region |
44 | ″ | ″ | supersaturation |
45 | ″ | ″ | traffic |
46 | ″ | ″ | trails |
47 | ″ | schema:name | Air traffic may increase cirrus cloudiness |
48 | ″ | schema:pagination | 30-31 |
49 | ″ | schema:productId | N1155a0b3e081436f85daba2abf1ab311 |
50 | ″ | ″ | Nffc817d6f08642d1bd49a0060aba7b46 |
51 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001078950 |
52 | ″ | ″ | https://doi.org/10.1038/16169 |
53 | ″ | schema:sdDatePublished | 2022-05-10T09:47 |
54 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
55 | ″ | schema:sdPublisher | Nef283211010b4c1faf704ec116aefbff |
56 | ″ | schema:url | https://doi.org/10.1038/16169 |
57 | ″ | sgo:license | sg:explorer/license/ |
58 | ″ | sgo:sdDataset | articles |
59 | ″ | rdf:type | schema:ScholarlyArticle |
60 | N097378d917594d778b395b9983678161 | rdf:first | sg:person.01301253676.11 |
61 | ″ | rdf:rest | rdf:nil |
62 | N1155a0b3e081436f85daba2abf1ab311 | schema:name | doi |
63 | ″ | schema:value | 10.1038/16169 |
64 | ″ | rdf:type | schema:PropertyValue |
65 | N283a2a83efb54aa18251952be13f24c0 | schema:volumeNumber | 397 |
66 | ″ | rdf:type | schema:PublicationVolume |
67 | N852b3ec84336479ab25a1fe393466314 | schema:issueNumber | 6714 |
68 | ″ | rdf:type | schema:PublicationIssue |
69 | Nef283211010b4c1faf704ec116aefbff | schema:name | Springer Nature - SN SciGraph project |
70 | ″ | rdf:type | schema:Organization |
71 | Nffc817d6f08642d1bd49a0060aba7b46 | schema:name | dimensions_id |
72 | ″ | schema:value | pub.1001078950 |
73 | ″ | rdf:type | schema:PropertyValue |
74 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
75 | ″ | schema:name | Engineering |
76 | ″ | rdf:type | schema:DefinedTerm |
77 | anzsrc-for:0901 | schema:inDefinedTermSet | anzsrc-for: |
78 | ″ | schema:name | Aerospace Engineering |
79 | ″ | rdf:type | schema:DefinedTerm |
80 | sg:journal.1018957 | schema:issn | 0028-0836 |
81 | ″ | ″ | 1476-4687 |
82 | ″ | schema:name | Nature |
83 | ″ | schema:publisher | Springer Nature |
84 | ″ | rdf:type | schema:Periodical |
85 | sg:person.01301253676.11 | schema:affiliation | grid-institutes:grid.497265.b |
86 | ″ | schema:familyName | Boucher |
87 | ″ | schema:givenName | Olivier |
88 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301253676.11 |
89 | ″ | rdf:type | schema:Person |
90 | grid-institutes:grid.497265.b | schema:alternateName | Laboratoire d'Optique Atmosphérique, U.F.R. de Physique, Université de Lille-I, 59655, Villeneuve d'Ascq Cedex, France |
91 | ″ | schema:name | Laboratoire d'Optique Atmosphérique, U.F.R. de Physique, Université de Lille-I, 59655, Villeneuve d'Ascq Cedex, France |
92 | ″ | rdf:type | schema:Organization |