Quantitative analysis of complex protein mixtures using isotope-coded affinity tags View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-10

AUTHORS

S P Gygi, B Rist, S A Gerber, F Turecek, M H Gelb, R Aebersold

ABSTRACT

We describe an approach for the accurate quantification and concurrent sequence identification of the individual proteins within complex mixtures. The method is based on a class of new chemical reagents termed isotope-coded affinity tags (ICATs) and tandem mass spectrometry. Using this strategy, we compared protein expression in the yeast Saccharomyces cerevisiae, using either ethanol or galactose as a carbon source. The measured differences in protein expression correlated with known yeast metabolic function under glucose-repressed conditions. The method is redundant if multiple cysteinyl residues are present, and the relative quantification is highly accurate because it is based on stable isotope dilution techniques. The ICAT approach should provide a widely applicable means to compare quantitatively global protein expression in cells and tissues. More... »

PAGES

994-999

Journal

TITLE

Nature Biotechnology

ISSUE

10

VOLUME

17

Related Patents

  • Biomarkers For Head-And-Neck Cancers And Precancers
  • Improved Protein Expression Comparison Assay Results And Applications
  • Method For Analysis Of Compound-Binding Ability Of Protein
  • Method Of Detection, Separation And Identification For Expressed Trace Protein/Peptide
  • Quantification Of Enzyme Activity By Mass Spectrometry
  • Target Activated Microtransfer
  • T Helper Cell Epitopes
  • Differential Labeling For Quantitative Analysis Of Complex Protein Mixtures
  • Method For Selectively Collecting N-Terminal Peptide Fragment Of Protein
  • T Helper Cell Epitopes
  • Differential Labeling For Quantitative Analysis Of Complex Protein Mixtures
  • Methods For Conducting Metabolic Analyses
  • Oligonucleotides Useful For Detecting And Analyzing Nucleic Acids Of Interest
  • Mass Labels
  • Quantification Of Impurities For Release Testing Of Peptide Products
  • Method Of Analyzing Protein Structural Affinity Relationship
  • Methods For Quantifying Activity Of Protein Modifying Enzymes
  • Method For Identifying Quantifiable Peptides
  • Mass Spectrometry-Based Identification Of Proteins
  • Methods Of Classifying Drug Responsiveness Using Multiparameter Analysis
  • Mass Spectrometer With Bypass Of A Fragmentation Device
  • Methods For Analysis Of Measurement Errors In Measured Signals
  • Methods Of Quantitation And Identification Of Peptides And Proteins
  • Analyte Determination Utilizing Mass Tagging Reagents Comprising A Non-Encoded Detectable Label
  • Universal Peptide-Binding Scaffolds And Protein Chips
  • Amine-Containing Compound Analysis Methods
  • High Sensitivity Quantitation Of Peptides By Mass Spectrometry
  • Anova Method For Data Analysis
  • Sets And Compositions Pertaining To Analyte Determination
  • Methods And Compositions For Diagnosis Or Prognosis Of Cardiovascular Disease
  • Methods For Quantification And De Novo Polypeptide Sequencing By Mass Spectrometry
  • Method For The Quantitative Analysis Of Organic Molecules In A Sample
  • Isotope Distribution Encoded Tags For Protein Identification
  • Procedure For Structural Characterization Of A Recombinant Polyclonal Protein Or A Polyclonal Cell Line
  • Isotopically Enriched N-Substituted Piperazines And Methods For The Preparation Thereof
  • Methods Of Quantitation And Identification Of Peptides And Proteins
  • Determination Of Analyte Characteristics Based Upon Binding Properties
  • Isobaric Labels For Mass Spectrometric Analysis Of Peptides And Method Thereof
  • Differential Phage Capture Proteomics
  • Lipoprotein-Associated Markers For Cardiovascular Disease
  • Target Activated Microtransfer
  • Process For Improved Protein Expression By Strain Engineering
  • Methods For Deriving A Cumulative Ranking
  • Zwitterionic Dyes For Labeling In Proteomic And Other Biological Analyses
  • Mass Analysis Using Alternating Fragmentation Modes
  • High Sensitivity Quantitation Of Peptides By Mass Spectrometry
  • Pharmaceutical Composition Comprising A Glp-1 Agonist, An Insulin And Methionine
  • Use Of Ave0010 For The Treatment Of Diabetes Mellitus Type 2
  • Pharmaceutical Composition For Use In The Treatment Of A Neurodegenerative Disease
  • T Helper Cell Epitopes
  • Pharmaceutical Composition For Use In The Treatment Of A Neurodegenerative Disease
  • Methods And Compositions For Diagnosis Or Prognosis Of Cardiovascular Disease
  • Solid Support Having Ligand Immobilized Thereon By Using Photocleavable Linker
  • Multiplex Spatial Profiling Of Gene Expression
  • System And Method Of Determining Proteomic Differences
  • Selective Labeling And Isolation Of Phosphopeptides And Applications To Proteome Analysis
  • Protein Mixture Analysis By Mass Spectrometry
  • Compositions And Kits Pertaining To Analyte Determination
  • Proteomic Analysis
  • Phosphoprotein Binding Agents And Methods Of Their Use
  • Ultra-Sensitive Detection Systems Using Alterable Peptide Tags
  • Method For Quantifying Modified Peptides
  • Plate For Mass Spectrometry, Process For Preparing The Same And Use Thereof
  • Methods For High Throughput And Quantitative Proteome Analysis
  • Compounds And Methods For The Rapid Quantitative Analysis Of Proteins And Polypeptides
  • Isotopically Enriched N-Substituted Piperazines And Methods For The Preparation Thereof
  • System For Microvolume Laser Scanning Cytometry
  • Quantification Of Enzyme Activity By Mass Spectrometry
  • Isotopically Enriched N-Substituted Piperazine Acetic Acids And Methods For The Preparation Thereof
  • Insulin Glargine/Lixisenatide Fixed Ratio Formulation
  • Multiplex Spatial Profiling Of Gene Expression
  • Methods To Assess Quality Of Microarrays
  • Computational Methods And Systems For Multidimensional Analysis
  • Zwitterionic Dyes For Labeling In Proteomic And Other Biological Analyses
  • Mass Spectrometric Determination Of Blood Enzyme Activity
  • Mass Labels
  • Affinity Selected Signature Peptides For Protein Identification And Quantification
  • Active Esters Of N-Substituted Piperazine Acetic Acids, Including Isotopically Enriched Versions Thereof
  • Quantification Of Impurities For Release Testing Of Peptide Products
  • Methods For Structural Analysis Of Proteins
  • A Method For Quantifying Proteins And Isoforms Thereof
  • Quantitation Method Using Isotope Labeled Internal Standard Substance, Analysis System For Executing The Quantitation Method, And Program For The Analysis
  • Mass Spectrometric Analysis Of Biopolymers
  • Methods For Conducting Metabolic Analyses
  • Methods Of Quantitation And Identification Of Peptides And Proteins
  • Method Of Detection, Separation And Identification For Expressed Trace Protein/Peptide
  • Mass Labels For Biomolecules Containing A 2,6-Dimethyl-Piperidin-L-Yl Methylene Or A Pyrimidin-2-Yl Thiomethylene Mass Marker Moiety And A Succinimid-Oxy-Carbonyl Reactive Functional Group
  • Compound For Derivatizing Polypeptides And Method For Sequencing And Quantifying Amino Acids In Polypeptides Using The Same
  • Acid-Labile Isotope-Coded Extractant (Alice) And Its Use In Quantitative Mass Spectrometric Analysis Of Protein Mixtures
  • Methods For Isolating And Labeling Sample Molecules
  • Pharmaceutical Composition Comprising A Glp-1-Agonist And Methionine
  • Anti-Rhesus D Recombinant Polyclonal Antibody
  • Zwitterionic Dyes For Labeling In Proteomic And Other Biological Analyses
  • Target Activated Microtransfer
  • Method Of Analyzing Differential Expression Of Proteins In Proteomes By Mass Spectrometry
  • Methods Of Measuring Protein Stability
  • Zwitterionic Dyes For Labeling In Proteomic And Other Biological Analyses
  • Methods For Proteomic Profiling Using Non-Natural Amino Acids
  • Isotope-Coded Ionization-Enhancing Reagents (Icier) For High-Throughput Protein Identification And Quantitation Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry
  • Methods For Isolation And Labeling Of Sample Molecules
  • Methods For Quantification And De Novo Polypeptide Sequencing By Mass Spectrometry
  • Compounds And Methods For Analyzing The Proteome
  • Compositions And Methods For Treating Steroid Resistant Nephrotic Syndrome And/Or Steroid Sensitive Nephrotic Syndrome
  • Median Filter For Liquid Chromatography-Mass Spectrometry Data
  • Isobaric Tags For Analyte Detection And Quantification
  • Methods, Mixtures, Kits And Compositions Pertaining To Analyte Determination
  • Target Activated Microtransfer
  • Polychronic Laser Scanning System And Method Of Use
  • Isobaric Tandem Mass Tags For Quantitative Proteomics And Peptidomics
  • Quantification Of Impurities For Release Testing Of Peptide Products
  • Tagging Reagents And Methods For Hydroxylated Compounds
  • Method For Charcterising Analytes
  • Procedure For Structural Characterization Of A Recombinant Polyclonal Protein Or A Polyclonal Cell Line
  • Methods For Evaluating Ribonucleotide Sequences
  • Mass Spectrometer With Bypass Of A Fragmentation Device
  • Biomarkers For Head-And-Neck Cancers And Precancers
  • High Sensitivity Quantitation Of Peptides By Mass Spectrometry
  • Vivo Isotopic Labeling Method For Quantitative Glycomics
  • Methods And Kits Useful For The Simplification Of Complex Peptide Mixtures
  • Mass Spectrometry-Based Identification Of Proteins
  • Method For Quantifying Protein
  • Mass Defect Labeling For The Determination Of Oligomer Sequences
  • Methods And Kits Useful For The Simplification Of Complex Peptide Mixtures
  • Gene Discovery For The System Assignment Of Gene Function
  • Analyzing Large Data Sets Using A Computer System
  • Mass Spectrometer With Bypass Of A Fragmentation Device
  • Mass Labels
  • Labeling Reagents For Analyte Determination And Methods And Compounds Used In Making The Same
  • Differential Phage Capture Proteomics
  • Synthesis Of Quinones And Phenols On Solid Support
  • Methods For Quantitative Proteome Analysis Of Glycoproteins
  • T Helper Cell Epitopes
  • Process For Analyzing Protein Samples
  • Probe For Mass Spectrometry
  • Method For Characterizing Biomolecules Utilizing A Result Driven Strategy
  • Methods, Mixtures, Kits And Compositions Pertaining To Analyte Determination
  • Mass Tags For Quantitative Analysis
  • Mass Tags For Quantitative Analyses
  • Method Of Mass Spectrometry For Identifying Polypeptides
  • Reactive Mass Labels
  • Pharmaceutical Combination For Improving Glycemic Control As Add-On Therapy To Basal Insulin
  • Lipoprotein-Associated Markers For Cardiovascular Disease
  • Analyte Determination Utilizing Mass Tagging Reagents Comprising A Non-Encoded Detectable Label
  • Multiplex Protein Fractionation
  • Analyzing Large Data Sets Using A Computer System
  • Methods For High-Throughput And Quantitative Proteome Analysis
  • Polypeptide Analyses Using Stable Isotope Labeling
  • Affinity Selected Signature Peptides For Protein Identification And Quantification
  • Methods For Proteomic Profiling Using Non-Natural Amino Acids
  • Mass Tags For Quantitative Analyses
  • Triazine Derivatives As Universal Peptide Isotope Tag Reagents (U-Pit)
  • Method And Kit For Quantitative Analysis Of Protein
  • Pharmaceutical Combination For Use In Glycemic Control In Diabetes Type 2 Patients
  • Affinity Selector Based Recognition And Quantification System And Method For Multiple Analytes In A Single Analysis
  • Methods And Computer Systems For Analyzing High-Throughput Assays
  • Methods And Compositions For Rna Interference
  • Mass Spectrometer With Bypass Of A Fragmentation Device
  • Capture Compounds, Collections Thereof And Methods For Analyzing The Proteome And Complex Compositions
  • Labeling Agents For Mass Spectrometry Comprising Tertiary Amines
  • Method Of Isotope Labeling And Determining Protein Synthesis, Quantitation And Protein Expression
  • High Sensitivity Quantitation Of Peptides By Mass Spectrometry
  • Multiparameter Analysis For Predictive Medicine
  • Mass Spectrometric Analysis
  • Proteomic Analysis
  • Labeling Of Proteomic Samples During Proteolysis For Quantitation And Sample Multiplexing
  • Isobarically Labeled Analytes And Fragment Ions Derived Therefrom
  • Multiparameter Analysis For Predictive Medicine
  • Protein Separation Via Multidimensional Electrophoresis
  • Rapid Quantitative Analysis Of Proteins Or Protein Function In Complex Mixtures
  • Affinity Selector Based Recognition And Quantification System And Method For Multiple Analytes In A Single Analysis
  • Capture Compounds And Methods For Analyzing The Proteome
  • Method And Apparatus For De-Convoluting A Convoluted Spectrum
  • Affinity Capture Of Peptides By Microarray And Related Methods
  • Materials And Methods For Controlling Isotope Effects During Fractionation Of Analytes
  • Methods For Conducting Metabolic Analyses
  • Capture Compounds, Collections Thereof And Methods For Analyzing The Proteome And Complex Compositions
  • Mass Spectrometric Quantitation Method For Biomolecules Based On Metabolically Labeled Internal Standards
  • Combination Of An Insulin And A Glp-1-Agonist
  • Materials And Methods For Controlling Isotope Effects During Fractionation Of Analytes
  • Chemical Reagents And Methods For Detection And Quantification Of Proteins In Complex Mixtures
  • Systems And Methods For Measuring Translation Activity In Viable Cells
  • Endometrial Phase Or Endometrial Cancer Biomarkers
  • Pharmaceutical Composition Comprising A Glp-1 Agonist And Methionine
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/13690

    DOI

    http://dx.doi.org/10.1038/13690

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1029022565

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10504701


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Affinity Labels", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatography, Liquid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Isotope Labeling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mass Spectrometry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteins", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Molecular Biotechnology, University of Washington, Box 357730, Seattle WA 98195-7730, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gygi", 
            "givenName": "S P", 
            "type": "Person"
          }, 
          {
            "familyName": "Rist", 
            "givenName": "B", 
            "id": "sg:person.0627330757.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627330757.35"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Gerber", 
            "givenName": "S A", 
            "id": "sg:person.0713324153.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713324153.90"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Turecek", 
            "givenName": "F", 
            "id": "sg:person.01323231721.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323231721.61"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Gelb", 
            "givenName": "M H", 
            "id": "sg:person.0627351573.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627351573.12"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Aebersold", 
            "givenName": "R", 
            "id": "sg:person.015313356237.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313356237.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/mas.1280110402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006125388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mas.1280110402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006125388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.92.11.5072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008013511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150191045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010521812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150191045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010521812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150180808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011551115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150180808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011551115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/10890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012772847", 
              "https://doi.org/10.1038/10890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/10890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012772847", 
              "https://doi.org/10.1038/10890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.93.25.14440", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015989129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/27.1.69", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017605455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/1044-0305(94)80016-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018629105", 
              "https://doi.org/10.1016/1044-0305(94)80016-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/1044-0305(94)80016-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018629105", 
              "https://doi.org/10.1016/1044-0305(94)80016-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150180810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021732427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150180810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021732427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(00)81845-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024010988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.19.3.1720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025467756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9525(00)88980-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031668396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1522-2683(19990201)20:2<310::aid-elps310>3.0.co;2-m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041013162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1522-2683(19990201)20:2<310::aid-elps310>3.0.co;2-m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041013162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150171106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045817463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150171106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045817463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1098-939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049107556", 
              "https://doi.org/10.1038/nbt1098-939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.96.12.6591", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049321676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac00096a002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054971699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac961155l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055073200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac961155l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055073200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac970488v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055074124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac970488v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055074124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac9806005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055075465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac9806005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055075465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja982878k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055870636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.278.5338.680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062558446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082573070", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-10", 
        "datePublishedReg": "1999-10-01", 
        "description": "We describe an approach for the accurate quantification and concurrent sequence identification of the individual proteins within complex mixtures. The method is based on a class of new chemical reagents termed isotope-coded affinity tags (ICATs) and tandem mass spectrometry. Using this strategy, we compared protein expression in the yeast Saccharomyces cerevisiae, using either ethanol or galactose as a carbon source. The measured differences in protein expression correlated with known yeast metabolic function under glucose-repressed conditions. The method is redundant if multiple cysteinyl residues are present, and the relative quantification is highly accurate because it is based on stable isotope dilution techniques. The ICAT approach should provide a widely applicable means to compare quantitatively global protein expression in cells and tissues.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/13690", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2439911", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2439227", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2684527", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "name": "Quantitative analysis of complex protein mixtures using isotope-coded\naffinity tags", 
        "pagination": "994-999", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8a41f0b6587f886d7373784fb9f5a011fe195774946b6b994d580b9d00e0c943"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10504701"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/13690"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1029022565"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/13690", 
          "https://app.dimensions.ai/details/publication/pub.1029022565"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87115_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nbt/journal/v17/n10/full/nbt1099_994.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/13690'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/13690'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/13690'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/13690'


     

    This table displays all metadata directly associated to this object as RDF triples.

    198 TRIPLES      21 PREDICATES      58 URIs      27 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/13690 schema:about N19f215e430b343e8b7833bdf6e3351ac
    2 N6432f4877a7c4918b6efeab7d2fa1c2a
    3 N68b3a50043e140d7aa555b268a629268
    4 Na9b4798ad7084e22b2e039766becbabc
    5 Nce5576fe78b641abad4612ac128f5349
    6 Nf7796e08faf54618a04d8af6d8e18d2c
    7 anzsrc-for:06
    8 anzsrc-for:0601
    9 schema:author N9a1357bfbdd44b4d851956c15d9cff6a
    10 schema:citation sg:pub.10.1016/1044-0305(94)80016-2
    11 sg:pub.10.1038/10890
    12 sg:pub.10.1038/nbt1098-939
    13 https://app.dimensions.ai/details/publication/pub.1082573070
    14 https://doi.org/10.1002/(sici)1522-2683(19990201)20:2<310::aid-elps310>3.0.co;2-m
    15 https://doi.org/10.1002/elps.1150171106
    16 https://doi.org/10.1002/elps.1150180808
    17 https://doi.org/10.1002/elps.1150180810
    18 https://doi.org/10.1002/elps.1150191045
    19 https://doi.org/10.1002/mas.1280110402
    20 https://doi.org/10.1016/s0092-8674(00)81845-0
    21 https://doi.org/10.1016/s0168-9525(00)88980-5
    22 https://doi.org/10.1021/ac00096a002
    23 https://doi.org/10.1021/ac961155l
    24 https://doi.org/10.1021/ac970488v
    25 https://doi.org/10.1021/ac9806005
    26 https://doi.org/10.1021/ja982878k
    27 https://doi.org/10.1073/pnas.92.11.5072
    28 https://doi.org/10.1073/pnas.93.25.14440
    29 https://doi.org/10.1073/pnas.96.12.6591
    30 https://doi.org/10.1093/nar/27.1.69
    31 https://doi.org/10.1126/science.278.5338.680
    32 https://doi.org/10.1128/mcb.19.3.1720
    33 schema:datePublished 1999-10
    34 schema:datePublishedReg 1999-10-01
    35 schema:description We describe an approach for the accurate quantification and concurrent sequence identification of the individual proteins within complex mixtures. The method is based on a class of new chemical reagents termed isotope-coded affinity tags (ICATs) and tandem mass spectrometry. Using this strategy, we compared protein expression in the yeast Saccharomyces cerevisiae, using either ethanol or galactose as a carbon source. The measured differences in protein expression correlated with known yeast metabolic function under glucose-repressed conditions. The method is redundant if multiple cysteinyl residues are present, and the relative quantification is highly accurate because it is based on stable isotope dilution techniques. The ICAT approach should provide a widely applicable means to compare quantitatively global protein expression in cells and tissues.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree false
    39 schema:isPartOf Naa4e6efbe7b2413c9d922d4f8a6bd6cf
    40 Naaea14505321408a8f2f1f54b6bb16f4
    41 sg:journal.1115214
    42 schema:name Quantitative analysis of complex protein mixtures using isotope-coded affinity tags
    43 schema:pagination 994-999
    44 schema:productId N0f66bd1d84374b44934fab0776070986
    45 N623e2c8dc81148b48b00b86fbe90b3c3
    46 N6d2e04654f984bf0808943e88d8259e9
    47 N89629117c1b6496a923f412e30cffccf
    48 Nae69f23561fc4922975fd977e190e183
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029022565
    50 https://doi.org/10.1038/13690
    51 schema:sdDatePublished 2019-04-11T12:27
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher Ne0d3c0318e384a11b68ef8bf87bbd294
    54 schema:url http://www.nature.com/nbt/journal/v17/n10/full/nbt1099_994.html
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N0a8de79999c5472a97b2af81cee3e830 rdf:first sg:person.015313356237.76
    59 rdf:rest rdf:nil
    60 N0f66bd1d84374b44934fab0776070986 schema:name doi
    61 schema:value 10.1038/13690
    62 rdf:type schema:PropertyValue
    63 N19f215e430b343e8b7833bdf6e3351ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    64 schema:name Amino Acid Sequence
    65 rdf:type schema:DefinedTerm
    66 N1c3c0ce4310a4dd2b2cfd4315ea9f287 schema:affiliation N8f699612777a46a39c53973cf2906f28
    67 schema:familyName Gygi
    68 schema:givenName S P
    69 rdf:type schema:Person
    70 N392ae2d3643c4cd39c084d67e068ed8b rdf:first sg:person.0627330757.35
    71 rdf:rest N75e2d30c21334ac18d051fd231298d54
    72 N623e2c8dc81148b48b00b86fbe90b3c3 schema:name dimensions_id
    73 schema:value pub.1029022565
    74 rdf:type schema:PropertyValue
    75 N6432f4877a7c4918b6efeab7d2fa1c2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Proteins
    77 rdf:type schema:DefinedTerm
    78 N68b3a50043e140d7aa555b268a629268 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Chromatography, Liquid
    80 rdf:type schema:DefinedTerm
    81 N6d2e04654f984bf0808943e88d8259e9 schema:name readcube_id
    82 schema:value 8a41f0b6587f886d7373784fb9f5a011fe195774946b6b994d580b9d00e0c943
    83 rdf:type schema:PropertyValue
    84 N723b49fed3dd4d8690d5f3d382f5a590 rdf:first sg:person.0627351573.12
    85 rdf:rest N0a8de79999c5472a97b2af81cee3e830
    86 N75e2d30c21334ac18d051fd231298d54 rdf:first sg:person.0713324153.90
    87 rdf:rest Nd34f169e902d436abe9fc64ee3947154
    88 N89629117c1b6496a923f412e30cffccf schema:name pubmed_id
    89 schema:value 10504701
    90 rdf:type schema:PropertyValue
    91 N8f699612777a46a39c53973cf2906f28 schema:name Department of Molecular Biotechnology, University of Washington, Box 357730, Seattle WA 98195-7730, USA.
    92 rdf:type schema:Organization
    93 N9a1357bfbdd44b4d851956c15d9cff6a rdf:first N1c3c0ce4310a4dd2b2cfd4315ea9f287
    94 rdf:rest N392ae2d3643c4cd39c084d67e068ed8b
    95 Na9b4798ad7084e22b2e039766becbabc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Isotope Labeling
    97 rdf:type schema:DefinedTerm
    98 Naa4e6efbe7b2413c9d922d4f8a6bd6cf schema:volumeNumber 17
    99 rdf:type schema:PublicationVolume
    100 Naaea14505321408a8f2f1f54b6bb16f4 schema:issueNumber 10
    101 rdf:type schema:PublicationIssue
    102 Nae69f23561fc4922975fd977e190e183 schema:name nlm_unique_id
    103 schema:value 9604648
    104 rdf:type schema:PropertyValue
    105 Nce5576fe78b641abad4612ac128f5349 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Affinity Labels
    107 rdf:type schema:DefinedTerm
    108 Nd34f169e902d436abe9fc64ee3947154 rdf:first sg:person.01323231721.61
    109 rdf:rest N723b49fed3dd4d8690d5f3d382f5a590
    110 Ne0d3c0318e384a11b68ef8bf87bbd294 schema:name Springer Nature - SN SciGraph project
    111 rdf:type schema:Organization
    112 Nf7796e08faf54618a04d8af6d8e18d2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Mass Spectrometry
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Biological Sciences
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Biochemistry and Cell Biology
    120 rdf:type schema:DefinedTerm
    121 sg:grant.2439227 http://pending.schema.org/fundedItem sg:pub.10.1038/13690
    122 rdf:type schema:MonetaryGrant
    123 sg:grant.2439911 http://pending.schema.org/fundedItem sg:pub.10.1038/13690
    124 rdf:type schema:MonetaryGrant
    125 sg:grant.2684527 http://pending.schema.org/fundedItem sg:pub.10.1038/13690
    126 rdf:type schema:MonetaryGrant
    127 sg:journal.1115214 schema:issn 1087-0156
    128 1546-1696
    129 schema:name Nature Biotechnology
    130 rdf:type schema:Periodical
    131 sg:person.01323231721.61 schema:familyName Turecek
    132 schema:givenName F
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323231721.61
    134 rdf:type schema:Person
    135 sg:person.015313356237.76 schema:familyName Aebersold
    136 schema:givenName R
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313356237.76
    138 rdf:type schema:Person
    139 sg:person.0627330757.35 schema:familyName Rist
    140 schema:givenName B
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627330757.35
    142 rdf:type schema:Person
    143 sg:person.0627351573.12 schema:familyName Gelb
    144 schema:givenName M H
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627351573.12
    146 rdf:type schema:Person
    147 sg:person.0713324153.90 schema:familyName Gerber
    148 schema:givenName S A
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713324153.90
    150 rdf:type schema:Person
    151 sg:pub.10.1016/1044-0305(94)80016-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018629105
    152 https://doi.org/10.1016/1044-0305(94)80016-2
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/10890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012772847
    155 https://doi.org/10.1038/10890
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/nbt1098-939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049107556
    158 https://doi.org/10.1038/nbt1098-939
    159 rdf:type schema:CreativeWork
    160 https://app.dimensions.ai/details/publication/pub.1082573070 schema:CreativeWork
    161 https://doi.org/10.1002/(sici)1522-2683(19990201)20:2<310::aid-elps310>3.0.co;2-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1041013162
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1002/elps.1150171106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045817463
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1002/elps.1150180808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011551115
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1002/elps.1150180810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021732427
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1002/elps.1150191045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010521812
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1002/mas.1280110402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006125388
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/s0092-8674(00)81845-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024010988
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/s0168-9525(00)88980-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031668396
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1021/ac00096a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054971699
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1021/ac961155l schema:sameAs https://app.dimensions.ai/details/publication/pub.1055073200
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1021/ac970488v schema:sameAs https://app.dimensions.ai/details/publication/pub.1055074124
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1021/ac9806005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055075465
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1021/ja982878k schema:sameAs https://app.dimensions.ai/details/publication/pub.1055870636
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1073/pnas.92.11.5072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008013511
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1073/pnas.93.25.14440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015989129
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1073/pnas.96.12.6591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049321676
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1093/nar/27.1.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017605455
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1126/science.278.5338.680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558446
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1128/mcb.19.3.1720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025467756
    198 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...