Quantitative analysis of complex protein mixtures using isotope-coded affinity tags View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-10

AUTHORS

S P Gygi, B Rist, S A Gerber, F Turecek, M H Gelb, R Aebersold

ABSTRACT

We describe an approach for the accurate quantification and concurrent sequence identification of the individual proteins within complex mixtures. The method is based on a class of new chemical reagents termed isotope-coded affinity tags (ICATs) and tandem mass spectrometry. Using this strategy, we compared protein expression in the yeast Saccharomyces cerevisiae, using either ethanol or galactose as a carbon source. The measured differences in protein expression correlated with known yeast metabolic function under glucose-repressed conditions. The method is redundant if multiple cysteinyl residues are present, and the relative quantification is highly accurate because it is based on stable isotope dilution techniques. The ICAT approach should provide a widely applicable means to compare quantitatively global protein expression in cells and tissues. More... »

PAGES

994-999

Journal

TITLE

Nature Biotechnology

ISSUE

10

VOLUME

17

Related Patents

  • Biomarkers For Head-And-Neck Cancers And Precancers
  • Improved Protein Expression Comparison Assay Results And Applications
  • Method For Analysis Of Compound-Binding Ability Of Protein
  • Method Of Detection, Separation And Identification For Expressed Trace Protein/Peptide
  • Quantification Of Enzyme Activity By Mass Spectrometry
  • Target Activated Microtransfer
  • T Helper Cell Epitopes
  • Differential Labeling For Quantitative Analysis Of Complex Protein Mixtures
  • Method For Selectively Collecting N-Terminal Peptide Fragment Of Protein
  • T Helper Cell Epitopes
  • Differential Labeling For Quantitative Analysis Of Complex Protein Mixtures
  • Methods For Conducting Metabolic Analyses
  • Oligonucleotides Useful For Detecting And Analyzing Nucleic Acids Of Interest
  • Mass Labels
  • Quantification Of Impurities For Release Testing Of Peptide Products
  • Method Of Analyzing Protein Structural Affinity Relationship
  • Methods For Quantifying Activity Of Protein Modifying Enzymes
  • Method For Identifying Quantifiable Peptides
  • Mass Spectrometry-Based Identification Of Proteins
  • Methods Of Classifying Drug Responsiveness Using Multiparameter Analysis
  • Mass Spectrometer With Bypass Of A Fragmentation Device
  • Methods For Analysis Of Measurement Errors In Measured Signals
  • Methods Of Quantitation And Identification Of Peptides And Proteins
  • Analyte Determination Utilizing Mass Tagging Reagents Comprising A Non-Encoded Detectable Label
  • Universal Peptide-Binding Scaffolds And Protein Chips
  • Amine-Containing Compound Analysis Methods
  • High Sensitivity Quantitation Of Peptides By Mass Spectrometry
  • Anova Method For Data Analysis
  • Sets And Compositions Pertaining To Analyte Determination
  • Methods And Compositions For Diagnosis Or Prognosis Of Cardiovascular Disease
  • Methods For Quantification And De Novo Polypeptide Sequencing By Mass Spectrometry
  • Method For The Quantitative Analysis Of Organic Molecules In A Sample
  • Isotope Distribution Encoded Tags For Protein Identification
  • Procedure For Structural Characterization Of A Recombinant Polyclonal Protein Or A Polyclonal Cell Line
  • Isotopically Enriched N-Substituted Piperazines And Methods For The Preparation Thereof
  • Methods Of Quantitation And Identification Of Peptides And Proteins
  • Determination Of Analyte Characteristics Based Upon Binding Properties
  • Isobaric Labels For Mass Spectrometric Analysis Of Peptides And Method Thereof
  • Differential Phage Capture Proteomics
  • Lipoprotein-Associated Markers For Cardiovascular Disease
  • Target Activated Microtransfer
  • Process For Improved Protein Expression By Strain Engineering
  • Methods For Deriving A Cumulative Ranking
  • Zwitterionic Dyes For Labeling In Proteomic And Other Biological Analyses
  • Mass Analysis Using Alternating Fragmentation Modes
  • High Sensitivity Quantitation Of Peptides By Mass Spectrometry
  • Pharmaceutical Composition Comprising A Glp-1 Agonist, An Insulin And Methionine
  • Use Of Ave0010 For The Treatment Of Diabetes Mellitus Type 2
  • Pharmaceutical Composition For Use In The Treatment Of A Neurodegenerative Disease
  • T Helper Cell Epitopes
  • Pharmaceutical Composition For Use In The Treatment Of A Neurodegenerative Disease
  • Methods And Compositions For Diagnosis Or Prognosis Of Cardiovascular Disease
  • Solid Support Having Ligand Immobilized Thereon By Using Photocleavable Linker
  • Multiplex Spatial Profiling Of Gene Expression
  • System And Method Of Determining Proteomic Differences
  • Selective Labeling And Isolation Of Phosphopeptides And Applications To Proteome Analysis
  • Protein Mixture Analysis By Mass Spectrometry
  • Compositions And Kits Pertaining To Analyte Determination
  • Proteomic Analysis
  • Phosphoprotein Binding Agents And Methods Of Their Use
  • Ultra-Sensitive Detection Systems Using Alterable Peptide Tags
  • Method For Quantifying Modified Peptides
  • Plate For Mass Spectrometry, Process For Preparing The Same And Use Thereof
  • Methods For High Throughput And Quantitative Proteome Analysis
  • Compounds And Methods For The Rapid Quantitative Analysis Of Proteins And Polypeptides
  • Isotopically Enriched N-Substituted Piperazines And Methods For The Preparation Thereof
  • System For Microvolume Laser Scanning Cytometry
  • Quantification Of Enzyme Activity By Mass Spectrometry
  • Isotopically Enriched N-Substituted Piperazine Acetic Acids And Methods For The Preparation Thereof
  • Insulin Glargine/Lixisenatide Fixed Ratio Formulation
  • Multiplex Spatial Profiling Of Gene Expression
  • Methods To Assess Quality Of Microarrays
  • Computational Methods And Systems For Multidimensional Analysis
  • Zwitterionic Dyes For Labeling In Proteomic And Other Biological Analyses
  • Mass Spectrometric Determination Of Blood Enzyme Activity
  • Mass Labels
  • Affinity Selected Signature Peptides For Protein Identification And Quantification
  • Active Esters Of N-Substituted Piperazine Acetic Acids, Including Isotopically Enriched Versions Thereof
  • Quantification Of Impurities For Release Testing Of Peptide Products
  • Methods For Structural Analysis Of Proteins
  • A Method For Quantifying Proteins And Isoforms Thereof
  • Quantitation Method Using Isotope Labeled Internal Standard Substance, Analysis System For Executing The Quantitation Method, And Program For The Analysis
  • Mass Spectrometric Analysis Of Biopolymers
  • Methods For Conducting Metabolic Analyses
  • Methods Of Quantitation And Identification Of Peptides And Proteins
  • Method Of Detection, Separation And Identification For Expressed Trace Protein/Peptide
  • Mass Labels For Biomolecules Containing A 2,6-Dimethyl-Piperidin-L-Yl Methylene Or A Pyrimidin-2-Yl Thiomethylene Mass Marker Moiety And A Succinimid-Oxy-Carbonyl Reactive Functional Group
  • Compound For Derivatizing Polypeptides And Method For Sequencing And Quantifying Amino Acids In Polypeptides Using The Same
  • Acid-Labile Isotope-Coded Extractant (Alice) And Its Use In Quantitative Mass Spectrometric Analysis Of Protein Mixtures
  • Methods For Isolating And Labeling Sample Molecules
  • Pharmaceutical Composition Comprising A Glp-1-Agonist And Methionine
  • Anti-Rhesus D Recombinant Polyclonal Antibody
  • Zwitterionic Dyes For Labeling In Proteomic And Other Biological Analyses
  • Target Activated Microtransfer
  • Method Of Analyzing Differential Expression Of Proteins In Proteomes By Mass Spectrometry
  • Methods Of Measuring Protein Stability
  • Zwitterionic Dyes For Labeling In Proteomic And Other Biological Analyses
  • Methods For Proteomic Profiling Using Non-Natural Amino Acids
  • Isotope-Coded Ionization-Enhancing Reagents (Icier) For High-Throughput Protein Identification And Quantitation Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry
  • Methods For Isolation And Labeling Of Sample Molecules
  • Methods For Quantification And De Novo Polypeptide Sequencing By Mass Spectrometry
  • Compounds And Methods For Analyzing The Proteome
  • Compositions And Methods For Treating Steroid Resistant Nephrotic Syndrome And/Or Steroid Sensitive Nephrotic Syndrome
  • Median Filter For Liquid Chromatography-Mass Spectrometry Data
  • Isobaric Tags For Analyte Detection And Quantification
  • Methods, Mixtures, Kits And Compositions Pertaining To Analyte Determination
  • Target Activated Microtransfer
  • Polychronic Laser Scanning System And Method Of Use
  • Isobaric Tandem Mass Tags For Quantitative Proteomics And Peptidomics
  • Quantification Of Impurities For Release Testing Of Peptide Products
  • Tagging Reagents And Methods For Hydroxylated Compounds
  • Method For Charcterising Analytes
  • Procedure For Structural Characterization Of A Recombinant Polyclonal Protein Or A Polyclonal Cell Line
  • Methods For Evaluating Ribonucleotide Sequences
  • Mass Spectrometer With Bypass Of A Fragmentation Device
  • Biomarkers For Head-And-Neck Cancers And Precancers
  • High Sensitivity Quantitation Of Peptides By Mass Spectrometry
  • Vivo Isotopic Labeling Method For Quantitative Glycomics
  • Methods And Kits Useful For The Simplification Of Complex Peptide Mixtures
  • Mass Spectrometry-Based Identification Of Proteins
  • Method For Quantifying Protein
  • Mass Defect Labeling For The Determination Of Oligomer Sequences
  • Methods And Kits Useful For The Simplification Of Complex Peptide Mixtures
  • Gene Discovery For The System Assignment Of Gene Function
  • Analyzing Large Data Sets Using A Computer System
  • Mass Spectrometer With Bypass Of A Fragmentation Device
  • Mass Labels
  • Labeling Reagents For Analyte Determination And Methods And Compounds Used In Making The Same
  • Differential Phage Capture Proteomics
  • Synthesis Of Quinones And Phenols On Solid Support
  • Methods For Quantitative Proteome Analysis Of Glycoproteins
  • T Helper Cell Epitopes
  • Process For Analyzing Protein Samples
  • Probe For Mass Spectrometry
  • Method For Characterizing Biomolecules Utilizing A Result Driven Strategy
  • Methods, Mixtures, Kits And Compositions Pertaining To Analyte Determination
  • Mass Tags For Quantitative Analysis
  • Mass Tags For Quantitative Analyses
  • Method Of Mass Spectrometry For Identifying Polypeptides
  • Reactive Mass Labels
  • Pharmaceutical Combination For Improving Glycemic Control As Add-On Therapy To Basal Insulin
  • Lipoprotein-Associated Markers For Cardiovascular Disease
  • Analyte Determination Utilizing Mass Tagging Reagents Comprising A Non-Encoded Detectable Label
  • Multiplex Protein Fractionation
  • Analyzing Large Data Sets Using A Computer System
  • Methods For High-Throughput And Quantitative Proteome Analysis
  • Polypeptide Analyses Using Stable Isotope Labeling
  • Affinity Selected Signature Peptides For Protein Identification And Quantification
  • Methods For Proteomic Profiling Using Non-Natural Amino Acids
  • Mass Tags For Quantitative Analyses
  • Triazine Derivatives As Universal Peptide Isotope Tag Reagents (U-Pit)
  • Method And Kit For Quantitative Analysis Of Protein
  • Pharmaceutical Combination For Use In Glycemic Control In Diabetes Type 2 Patients
  • Affinity Selector Based Recognition And Quantification System And Method For Multiple Analytes In A Single Analysis
  • Methods And Computer Systems For Analyzing High-Throughput Assays
  • Methods And Compositions For Rna Interference
  • Mass Spectrometer With Bypass Of A Fragmentation Device
  • Capture Compounds, Collections Thereof And Methods For Analyzing The Proteome And Complex Compositions
  • Labeling Agents For Mass Spectrometry Comprising Tertiary Amines
  • Method Of Isotope Labeling And Determining Protein Synthesis, Quantitation And Protein Expression
  • High Sensitivity Quantitation Of Peptides By Mass Spectrometry
  • Multiparameter Analysis For Predictive Medicine
  • Mass Spectrometric Analysis
  • Proteomic Analysis
  • Labeling Of Proteomic Samples During Proteolysis For Quantitation And Sample Multiplexing
  • Isobarically Labeled Analytes And Fragment Ions Derived Therefrom
  • Multiparameter Analysis For Predictive Medicine
  • Protein Separation Via Multidimensional Electrophoresis
  • Rapid Quantitative Analysis Of Proteins Or Protein Function In Complex Mixtures
  • Affinity Selector Based Recognition And Quantification System And Method For Multiple Analytes In A Single Analysis
  • Capture Compounds And Methods For Analyzing The Proteome
  • Method And Apparatus For De-Convoluting A Convoluted Spectrum
  • Affinity Capture Of Peptides By Microarray And Related Methods
  • Materials And Methods For Controlling Isotope Effects During Fractionation Of Analytes
  • Methods For Conducting Metabolic Analyses
  • Capture Compounds, Collections Thereof And Methods For Analyzing The Proteome And Complex Compositions
  • Mass Spectrometric Quantitation Method For Biomolecules Based On Metabolically Labeled Internal Standards
  • Combination Of An Insulin And A Glp-1-Agonist
  • Materials And Methods For Controlling Isotope Effects During Fractionation Of Analytes
  • Chemical Reagents And Methods For Detection And Quantification Of Proteins In Complex Mixtures
  • Systems And Methods For Measuring Translation Activity In Viable Cells
  • Endometrial Phase Or Endometrial Cancer Biomarkers
  • Pharmaceutical Composition Comprising A Glp-1 Agonist And Methionine
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/13690

    DOI

    http://dx.doi.org/10.1038/13690

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1029022565

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10504701


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Affinity Labels", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatography, Liquid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Isotope Labeling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mass Spectrometry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteins", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Molecular Biotechnology, University of Washington, Box 357730, Seattle WA 98195-7730, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gygi", 
            "givenName": "S P", 
            "type": "Person"
          }, 
          {
            "familyName": "Rist", 
            "givenName": "B", 
            "id": "sg:person.0627330757.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627330757.35"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Gerber", 
            "givenName": "S A", 
            "id": "sg:person.0713324153.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713324153.90"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Turecek", 
            "givenName": "F", 
            "id": "sg:person.01323231721.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323231721.61"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Gelb", 
            "givenName": "M H", 
            "id": "sg:person.0627351573.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627351573.12"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Aebersold", 
            "givenName": "R", 
            "id": "sg:person.015313356237.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313356237.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/mas.1280110402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006125388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mas.1280110402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006125388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.92.11.5072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008013511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150191045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010521812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150191045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010521812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150180808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011551115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150180808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011551115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/10890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012772847", 
              "https://doi.org/10.1038/10890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/10890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012772847", 
              "https://doi.org/10.1038/10890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.93.25.14440", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015989129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/27.1.69", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017605455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/1044-0305(94)80016-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018629105", 
              "https://doi.org/10.1016/1044-0305(94)80016-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/1044-0305(94)80016-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018629105", 
              "https://doi.org/10.1016/1044-0305(94)80016-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150180810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021732427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150180810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021732427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(00)81845-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024010988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.19.3.1720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025467756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9525(00)88980-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031668396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1522-2683(19990201)20:2<310::aid-elps310>3.0.co;2-m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041013162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1522-2683(19990201)20:2<310::aid-elps310>3.0.co;2-m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041013162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150171106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045817463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150171106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045817463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1098-939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049107556", 
              "https://doi.org/10.1038/nbt1098-939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.96.12.6591", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049321676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac00096a002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054971699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac961155l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055073200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac961155l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055073200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac970488v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055074124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac970488v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055074124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac9806005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055075465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac9806005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055075465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja982878k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055870636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.278.5338.680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062558446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082573070", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-10", 
        "datePublishedReg": "1999-10-01", 
        "description": "We describe an approach for the accurate quantification and concurrent sequence identification of the individual proteins within complex mixtures. The method is based on a class of new chemical reagents termed isotope-coded affinity tags (ICATs) and tandem mass spectrometry. Using this strategy, we compared protein expression in the yeast Saccharomyces cerevisiae, using either ethanol or galactose as a carbon source. The measured differences in protein expression correlated with known yeast metabolic function under glucose-repressed conditions. The method is redundant if multiple cysteinyl residues are present, and the relative quantification is highly accurate because it is based on stable isotope dilution techniques. The ICAT approach should provide a widely applicable means to compare quantitatively global protein expression in cells and tissues.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/13690", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2439911", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2439227", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2684527", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "name": "Quantitative analysis of complex protein mixtures using isotope-coded\naffinity tags", 
        "pagination": "994-999", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8a41f0b6587f886d7373784fb9f5a011fe195774946b6b994d580b9d00e0c943"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10504701"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/13690"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1029022565"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/13690", 
          "https://app.dimensions.ai/details/publication/pub.1029022565"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87115_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nbt/journal/v17/n10/full/nbt1099_994.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/13690'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/13690'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/13690'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/13690'


     

    This table displays all metadata directly associated to this object as RDF triples.

    198 TRIPLES      21 PREDICATES      58 URIs      27 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/13690 schema:about N2b07f1d125144bd7a8bb936587762913
    2 N7e4f312ab59d47558bb35063dbef4a8e
    3 Na0bbcb7453ca4fde9e70853ddcb3b9d8
    4 Nbe6f2b5aaa3c4605b9b87891c02b837a
    5 Ne84f9a5746bc4700aa4565bce9a512be
    6 Ne9666d225e5e430991a79ef3f33a046c
    7 anzsrc-for:06
    8 anzsrc-for:0601
    9 schema:author Nc4a72ec6626c49c9ac2cb444f8b68356
    10 schema:citation sg:pub.10.1016/1044-0305(94)80016-2
    11 sg:pub.10.1038/10890
    12 sg:pub.10.1038/nbt1098-939
    13 https://app.dimensions.ai/details/publication/pub.1082573070
    14 https://doi.org/10.1002/(sici)1522-2683(19990201)20:2<310::aid-elps310>3.0.co;2-m
    15 https://doi.org/10.1002/elps.1150171106
    16 https://doi.org/10.1002/elps.1150180808
    17 https://doi.org/10.1002/elps.1150180810
    18 https://doi.org/10.1002/elps.1150191045
    19 https://doi.org/10.1002/mas.1280110402
    20 https://doi.org/10.1016/s0092-8674(00)81845-0
    21 https://doi.org/10.1016/s0168-9525(00)88980-5
    22 https://doi.org/10.1021/ac00096a002
    23 https://doi.org/10.1021/ac961155l
    24 https://doi.org/10.1021/ac970488v
    25 https://doi.org/10.1021/ac9806005
    26 https://doi.org/10.1021/ja982878k
    27 https://doi.org/10.1073/pnas.92.11.5072
    28 https://doi.org/10.1073/pnas.93.25.14440
    29 https://doi.org/10.1073/pnas.96.12.6591
    30 https://doi.org/10.1093/nar/27.1.69
    31 https://doi.org/10.1126/science.278.5338.680
    32 https://doi.org/10.1128/mcb.19.3.1720
    33 schema:datePublished 1999-10
    34 schema:datePublishedReg 1999-10-01
    35 schema:description We describe an approach for the accurate quantification and concurrent sequence identification of the individual proteins within complex mixtures. The method is based on a class of new chemical reagents termed isotope-coded affinity tags (ICATs) and tandem mass spectrometry. Using this strategy, we compared protein expression in the yeast Saccharomyces cerevisiae, using either ethanol or galactose as a carbon source. The measured differences in protein expression correlated with known yeast metabolic function under glucose-repressed conditions. The method is redundant if multiple cysteinyl residues are present, and the relative quantification is highly accurate because it is based on stable isotope dilution techniques. The ICAT approach should provide a widely applicable means to compare quantitatively global protein expression in cells and tissues.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree false
    39 schema:isPartOf N25f2a15dac3d409cae18400b26a49eba
    40 Nbd9c083d214c45ebb23e7d53878baf80
    41 sg:journal.1115214
    42 schema:name Quantitative analysis of complex protein mixtures using isotope-coded affinity tags
    43 schema:pagination 994-999
    44 schema:productId N009552bf72bf4664b083f092442bdb37
    45 N1017f69be86b4d0798f99a1aba739eb0
    46 N25ad9a19e1fa4505b53b3bb31e281e91
    47 N8a4151279c7540baaee530d9a9d353d3
    48 Nf949e475a2fc4c959d2fdd198a374ec6
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029022565
    50 https://doi.org/10.1038/13690
    51 schema:sdDatePublished 2019-04-11T12:27
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher Ncda86e6337ed465a9baf26ec918cadcb
    54 schema:url http://www.nature.com/nbt/journal/v17/n10/full/nbt1099_994.html
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N009552bf72bf4664b083f092442bdb37 schema:name doi
    59 schema:value 10.1038/13690
    60 rdf:type schema:PropertyValue
    61 N1017f69be86b4d0798f99a1aba739eb0 schema:name readcube_id
    62 schema:value 8a41f0b6587f886d7373784fb9f5a011fe195774946b6b994d580b9d00e0c943
    63 rdf:type schema:PropertyValue
    64 N25ad9a19e1fa4505b53b3bb31e281e91 schema:name dimensions_id
    65 schema:value pub.1029022565
    66 rdf:type schema:PropertyValue
    67 N25f2a15dac3d409cae18400b26a49eba schema:volumeNumber 17
    68 rdf:type schema:PublicationVolume
    69 N2b07f1d125144bd7a8bb936587762913 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name Amino Acid Sequence
    71 rdf:type schema:DefinedTerm
    72 N2cf7c39619be42fc8c0cd1eb526ec527 rdf:first sg:person.0627330757.35
    73 rdf:rest Ne76d5470bdf44cd1bfd0c28d07e1d994
    74 N3449ec573b61480dbd599fb36e7d2645 schema:affiliation N3580b3eb3e4d408bb55c742574b71948
    75 schema:familyName Gygi
    76 schema:givenName S P
    77 rdf:type schema:Person
    78 N3580b3eb3e4d408bb55c742574b71948 schema:name Department of Molecular Biotechnology, University of Washington, Box 357730, Seattle WA 98195-7730, USA.
    79 rdf:type schema:Organization
    80 N416568ef94284825a844f22feb2da737 rdf:first sg:person.0627351573.12
    81 rdf:rest Nff3cf6149b2a46508cdae7cfbe58591b
    82 N7e4f312ab59d47558bb35063dbef4a8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Proteins
    84 rdf:type schema:DefinedTerm
    85 N8a4151279c7540baaee530d9a9d353d3 schema:name nlm_unique_id
    86 schema:value 9604648
    87 rdf:type schema:PropertyValue
    88 Na0bbcb7453ca4fde9e70853ddcb3b9d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Chromatography, Liquid
    90 rdf:type schema:DefinedTerm
    91 Naae50da894774337b48c83e5e0322fcf rdf:first sg:person.01323231721.61
    92 rdf:rest N416568ef94284825a844f22feb2da737
    93 Nbd9c083d214c45ebb23e7d53878baf80 schema:issueNumber 10
    94 rdf:type schema:PublicationIssue
    95 Nbe6f2b5aaa3c4605b9b87891c02b837a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Mass Spectrometry
    97 rdf:type schema:DefinedTerm
    98 Nc4a72ec6626c49c9ac2cb444f8b68356 rdf:first N3449ec573b61480dbd599fb36e7d2645
    99 rdf:rest N2cf7c39619be42fc8c0cd1eb526ec527
    100 Ncda86e6337ed465a9baf26ec918cadcb schema:name Springer Nature - SN SciGraph project
    101 rdf:type schema:Organization
    102 Ne76d5470bdf44cd1bfd0c28d07e1d994 rdf:first sg:person.0713324153.90
    103 rdf:rest Naae50da894774337b48c83e5e0322fcf
    104 Ne84f9a5746bc4700aa4565bce9a512be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Isotope Labeling
    106 rdf:type schema:DefinedTerm
    107 Ne9666d225e5e430991a79ef3f33a046c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Affinity Labels
    109 rdf:type schema:DefinedTerm
    110 Nf949e475a2fc4c959d2fdd198a374ec6 schema:name pubmed_id
    111 schema:value 10504701
    112 rdf:type schema:PropertyValue
    113 Nff3cf6149b2a46508cdae7cfbe58591b rdf:first sg:person.015313356237.76
    114 rdf:rest rdf:nil
    115 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Biological Sciences
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Biochemistry and Cell Biology
    120 rdf:type schema:DefinedTerm
    121 sg:grant.2439227 http://pending.schema.org/fundedItem sg:pub.10.1038/13690
    122 rdf:type schema:MonetaryGrant
    123 sg:grant.2439911 http://pending.schema.org/fundedItem sg:pub.10.1038/13690
    124 rdf:type schema:MonetaryGrant
    125 sg:grant.2684527 http://pending.schema.org/fundedItem sg:pub.10.1038/13690
    126 rdf:type schema:MonetaryGrant
    127 sg:journal.1115214 schema:issn 1087-0156
    128 1546-1696
    129 schema:name Nature Biotechnology
    130 rdf:type schema:Periodical
    131 sg:person.01323231721.61 schema:familyName Turecek
    132 schema:givenName F
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323231721.61
    134 rdf:type schema:Person
    135 sg:person.015313356237.76 schema:familyName Aebersold
    136 schema:givenName R
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313356237.76
    138 rdf:type schema:Person
    139 sg:person.0627330757.35 schema:familyName Rist
    140 schema:givenName B
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627330757.35
    142 rdf:type schema:Person
    143 sg:person.0627351573.12 schema:familyName Gelb
    144 schema:givenName M H
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627351573.12
    146 rdf:type schema:Person
    147 sg:person.0713324153.90 schema:familyName Gerber
    148 schema:givenName S A
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713324153.90
    150 rdf:type schema:Person
    151 sg:pub.10.1016/1044-0305(94)80016-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018629105
    152 https://doi.org/10.1016/1044-0305(94)80016-2
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/10890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012772847
    155 https://doi.org/10.1038/10890
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/nbt1098-939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049107556
    158 https://doi.org/10.1038/nbt1098-939
    159 rdf:type schema:CreativeWork
    160 https://app.dimensions.ai/details/publication/pub.1082573070 schema:CreativeWork
    161 https://doi.org/10.1002/(sici)1522-2683(19990201)20:2<310::aid-elps310>3.0.co;2-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1041013162
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1002/elps.1150171106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045817463
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1002/elps.1150180808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011551115
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1002/elps.1150180810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021732427
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1002/elps.1150191045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010521812
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1002/mas.1280110402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006125388
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/s0092-8674(00)81845-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024010988
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/s0168-9525(00)88980-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031668396
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1021/ac00096a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054971699
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1021/ac961155l schema:sameAs https://app.dimensions.ai/details/publication/pub.1055073200
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1021/ac970488v schema:sameAs https://app.dimensions.ai/details/publication/pub.1055074124
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1021/ac9806005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055075465
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1021/ja982878k schema:sameAs https://app.dimensions.ai/details/publication/pub.1055870636
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1073/pnas.92.11.5072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008013511
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1073/pnas.93.25.14440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015989129
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1073/pnas.96.12.6591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049321676
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1093/nar/27.1.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017605455
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1126/science.278.5338.680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558446
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1128/mcb.19.3.1720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025467756
    198 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...