Quantitative analysis of complex protein mixtures using isotope-coded affinity tags View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-10

AUTHORS

S P Gygi, B Rist, S A Gerber, F Turecek, M H Gelb, R Aebersold

ABSTRACT

We describe an approach for the accurate quantification and concurrent sequence identification of the individual proteins within complex mixtures. The method is based on a class of new chemical reagents termed isotope-coded affinity tags (ICATs) and tandem mass spectrometry. Using this strategy, we compared protein expression in the yeast Saccharomyces cerevisiae, using either ethanol or galactose as a carbon source. The measured differences in protein expression correlated with known yeast metabolic function under glucose-repressed conditions. The method is redundant if multiple cysteinyl residues are present, and the relative quantification is highly accurate because it is based on stable isotope dilution techniques. The ICAT approach should provide a widely applicable means to compare quantitatively global protein expression in cells and tissues. More... »

PAGES

994-999

References to SciGraph publications

Journal

TITLE

Nature Biotechnology

ISSUE

10

VOLUME

17

Clinical Trials linked to this publication

Related Patents

  • Method For Identifying Quantifiable Peptides
  • Mass Spectrometry-Based Identification Of Proteins
  • Method Of Analyzing Protein Structural Affinity Relationship
  • Method For Selectively Collecting N-Terminal Peptide Fragment Of Protein
  • Differential Labeling For Quantitative Analysis Of Complex Protein Mixtures
  • Methods For Conducting Metabolic Analyses
  • T Helper Cell Epitopes
  • Methods For Quantifying Activity Of Protein Modifying Enzymes
  • Mass Labels
  • Biomarkers For Head-And-Neck Cancers And Precancers
  • Improved Protein Expression Comparison Assay Results And Applications
  • Mass Spectrometer With Bypass Of A Fragmentation Device
  • Oligonucleotides Useful For Detecting And Analyzing Nucleic Acids Of Interest
  • Method For Analysis Of Compound-Binding Ability Of Protein
  • Quantification Of Enzyme Activity By Mass Spectrometry
  • T Helper Cell Epitopes
  • Differential Labeling For Quantitative Analysis Of Complex Protein Mixtures
  • Methods Of Classifying Drug Responsiveness Using Multiparameter Analysis
  • Analyte Determination Utilizing Mass Tagging Reagents Comprising A Non-Encoded Detectable Label
  • Target Activated Microtransfer
  • Universal Peptide-Binding Scaffolds And Protein Chips
  • High Sensitivity Quantitation Of Peptides By Mass Spectrometry
  • Anova Method For Data Analysis
  • Methods For Analysis Of Measurement Errors In Measured Signals
  • Methods Of Quantitation And Identification Of Peptides And Proteins
  • Quantification Of Impurities For Release Testing Of Peptide Products
  • Amine-Containing Compound Analysis Methods
  • Method Of Detection, Separation And Identification For Expressed Trace Protein/Peptide
  • Methods Of Quantitation And Identification Of Peptides And Proteins
  • Determination Of Analyte Characteristics Based Upon Binding Properties
  • Isobaric Labels For Mass Spectrometric Analysis Of Peptides And Method Thereof
  • Differential Phage Capture Proteomics
  • Lipoprotein-Associated Markers For Cardiovascular Disease
  • Target Activated Microtransfer
  • Process For Improved Protein Expression By Strain Engineering
  • Methods For Deriving A Cumulative Ranking
  • Zwitterionic Dyes For Labeling In Proteomic And Other Biological Analyses
  • Mass Analysis Using Alternating Fragmentation Modes
  • High Sensitivity Quantitation Of Peptides By Mass Spectrometry
  • Pharmaceutical Composition Comprising A Glp-1 Agonist, An Insulin And Methionine
  • Use Of Ave0010 For The Treatment Of Diabetes Mellitus Type 2
  • Pharmaceutical Composition For Use In The Treatment Of A Neurodegenerative Disease
  • T Helper Cell Epitopes
  • Pharmaceutical Composition For Use In The Treatment Of A Neurodegenerative Disease
  • Methods And Compositions For Diagnosis Or Prognosis Of Cardiovascular Disease
  • Solid Support Having Ligand Immobilized Thereon By Using Photocleavable Linker
  • Multiplex Spatial Profiling Of Gene Expression
  • System And Method Of Determining Proteomic Differences
  • Selective Labeling And Isolation Of Phosphopeptides And Applications To Proteome Analysis
  • Protein Mixture Analysis By Mass Spectrometry
  • Compositions And Kits Pertaining To Analyte Determination
  • Proteomic Analysis
  • Phosphoprotein Binding Agents And Methods Of Their Use
  • Ultra-Sensitive Detection Systems Using Alterable Peptide Tags
  • Methods For High Throughput And Quantitative Proteome Analysis
  • Compounds And Methods For The Rapid Quantitative Analysis Of Proteins And Polypeptides
  • Isotopically Enriched N-Substituted Piperazines And Methods For The Preparation Thereof
  • System For Microvolume Laser Scanning Cytometry
  • Quantification Of Enzyme Activity By Mass Spectrometry
  • Isotopically Enriched N-Substituted Piperazine Acetic Acids And Methods For The Preparation Thereof
  • Plate For Mass Spectrometry, Process For Preparing The Same And Use Thereof
  • Sets And Compositions Pertaining To Analyte Determination
  • Procedure For Structural Characterization Of A Recombinant Polyclonal Protein Or A Polyclonal Cell Line
  • Isotopically Enriched N-Substituted Piperazines And Methods For The Preparation Thereof
  • Methods And Compositions For Diagnosis Or Prognosis Of Cardiovascular Disease
  • Methods For Quantification And De Novo Polypeptide Sequencing By Mass Spectrometry
  • Method For Quantifying Modified Peptides
  • Method For The Quantitative Analysis Of Organic Molecules In A Sample
  • Isotope Distribution Encoded Tags For Protein Identification
  • Insulin Glargine/Lixisenatide Fixed Ratio Formulation
  • Multiplex Spatial Profiling Of Gene Expression
  • Methods To Assess Quality Of Microarrays
  • Computational Methods And Systems For Multidimensional Analysis
  • Zwitterionic Dyes For Labeling In Proteomic And Other Biological Analyses
  • Mass Spectrometric Determination Of Blood Enzyme Activity
  • Mass Labels
  • Pharmaceutical Composition Comprising A Glp-1-Agonist And Methionine
  • Anti-Rhesus D Recombinant Polyclonal Antibody
  • Zwitterionic Dyes For Labeling In Proteomic And Other Biological Analyses
  • Target Activated Microtransfer
  • Method Of Analyzing Differential Expression Of Proteins In Proteomes By Mass Spectrometry
  • Methods Of Measuring Protein Stability
  • Zwitterionic Dyes For Labeling In Proteomic And Other Biological Analyses
  • Methods For Proteomic Profiling Using Non-Natural Amino Acids
  • Quantitation Method Using Isotope Labeled Internal Standard Substance, Analysis System For Executing The Quantitation Method, And Program For The Analysis
  • Isobaric Tags For Analyte Detection And Quantification
  • Isotope-Coded Ionization-Enhancing Reagents (Icier) For High-Throughput Protein Identification And Quantitation Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry
  • Methods For Isolation And Labeling Of Sample Molecules
  • Methods For Quantification And De Novo Polypeptide Sequencing By Mass Spectrometry
  • Compounds And Methods For Analyzing The Proteome
  • Compositions And Methods For Treating Steroid Resistant Nephrotic Syndrome And/Or Steroid Sensitive Nephrotic Syndrome
  • Median Filter For Liquid Chromatography-Mass Spectrometry Data
  • Mass Spectrometric Analysis Of Biopolymers
  • Methods For Conducting Metabolic Analyses
  • Methods Of Quantitation And Identification Of Peptides And Proteins
  • Method Of Detection, Separation And Identification For Expressed Trace Protein/Peptide
  • Mass Labels For Biomolecules Containing A 2,6-Dimethyl-Piperidin-L-Yl Methylene Or A Pyrimidin-2-Yl Thiomethylene Mass Marker Moiety And A Succinimid-Oxy-Carbonyl Reactive Functional Group
  • Compound For Derivatizing Polypeptides And Method For Sequencing And Quantifying Amino Acids In Polypeptides Using The Same
  • Acid-Labile Isotope-Coded Extractant (Alice) And Its Use In Quantitative Mass Spectrometric Analysis Of Protein Mixtures
  • Methods For Isolating And Labeling Sample Molecules
  • Active Esters Of N-Substituted Piperazine Acetic Acids, Including Isotopically Enriched Versions Thereof
  • A Method For Quantifying Proteins And Isoforms Thereof
  • Methods, Mixtures, Kits And Compositions Pertaining To Analyte Determination
  • Target Activated Microtransfer
  • Polychronic Laser Scanning System And Method Of Use
  • Quantification Of Impurities For Release Testing Of Peptide Products
  • Methods For Structural Analysis Of Proteins
  • Affinity Selected Signature Peptides For Protein Identification And Quantification
  • Isobaric Tandem Mass Tags For Quantitative Proteomics And Peptidomics
  • Methods For Evaluating Ribonucleotide Sequences
  • Procedure For Structural Characterization Of A Recombinant Polyclonal Protein Or A Polyclonal Cell Line
  • Biomarkers For Head-And-Neck Cancers And Precancers
  • High Sensitivity Quantitation Of Peptides By Mass Spectrometry
  • Mass Spectrometer With Bypass Of A Fragmentation Device
  • Quantification Of Impurities For Release Testing Of Peptide Products
  • Vivo Isotopic Labeling Method For Quantitative Glycomics
  • Tagging Reagents And Methods For Hydroxylated Compounds
  • Mass Spectrometer With Bypass Of A Fragmentation Device
  • Method Of Mass Spectrometry For Identifying Polypeptides
  • Method For Quantifying Protein
  • Methods, Mixtures, Kits And Compositions Pertaining To Analyte Determination
  • Method For Charcterising Analytes
  • T Helper Cell Epitopes
  • Process For Analyzing Protein Samples
  • Probe For Mass Spectrometry
  • Method For Characterizing Biomolecules Utilizing A Result Driven Strategy
  • Synthesis Of Quinones And Phenols On Solid Support
  • Methods For Quantitative Proteome Analysis Of Glycoproteins
  • Mass Spectrometry-Based Identification Of Proteins
  • Methods And Kits Useful For The Simplification Of Complex Peptide Mixtures
  • Analyte Determination Utilizing Mass Tagging Reagents Comprising A Non-Encoded Detectable Label
  • Multiplex Protein Fractionation
  • Reactive Mass Labels
  • Differential Phage Capture Proteomics
  • Lipoprotein-Associated Markers For Cardiovascular Disease
  • Analyzing Large Data Sets Using A Computer System
  • Mass Defect Labeling For The Determination Of Oligomer Sequences
  • Methods And Kits Useful For The Simplification Of Complex Peptide Mixtures
  • Mass Tags For Quantitative Analysis
  • Gene Discovery For The System Assignment Of Gene Function
  • Mass Tags For Quantitative Analyses
  • Pharmaceutical Combination For Improving Glycemic Control As Add-On Therapy To Basal Insulin
  • Labeling Reagents For Analyte Determination And Methods And Compounds Used In Making The Same
  • Mass Labels
  • Capture Compounds, Collections Thereof And Methods For Analyzing The Proteome And Complex Compositions
  • Affinity Capture Of Peptides By Microarray And Related Methods
  • Mass Spectrometric Quantitation Method For Biomolecules Based On Metabolically Labeled Internal Standards
  • Methods For High-Throughput And Quantitative Proteome Analysis
  • Method And Apparatus For De-Convoluting A Convoluted Spectrum
  • Affinity Selector Based Recognition And Quantification System And Method For Multiple Analytes In A Single Analysis
  • Capture Compounds And Methods For Analyzing The Proteome
  • Analyzing Large Data Sets Using A Computer System
  • Methods For Conducting Metabolic Analyses
  • Materials And Methods For Controlling Isotope Effects During Fractionation Of Analytes
  • Pharmaceutical Combination For Use In Glycemic Control In Diabetes Type 2 Patients
  • Mass Tags For Quantitative Analyses
  • Affinity Selector Based Recognition And Quantification System And Method For Multiple Analytes In A Single Analysis
  • Methods And Computer Systems For Analyzing High-Throughput Assays
  • Triazine Derivatives As Universal Peptide Isotope Tag Reagents (U-Pit)
  • Method And Kit For Quantitative Analysis Of Protein
  • Methods For Proteomic Profiling Using Non-Natural Amino Acids
  • Mass Spectrometer With Bypass Of A Fragmentation Device
  • Capture Compounds, Collections Thereof And Methods For Analyzing The Proteome And Complex Compositions
  • Methods And Compositions For Rna Interference
  • Materials And Methods For Controlling Isotope Effects During Fractionation Of Analytes
  • Chemical Reagents And Methods For Detection And Quantification Of Proteins In Complex Mixtures
  • Polypeptide Analyses Using Stable Isotope Labeling
  • Rapid Quantitative Analysis Of Proteins Or Protein Function In Complex Mixtures
  • Protein Separation Via Multidimensional Electrophoresis
  • Affinity Selected Signature Peptides For Protein Identification And Quantification
  • Combination Of An Insulin And A Glp-1-Agonist
  • Pharmaceutical Composition Comprising A Glp-1 Agonist And Methionine
  • Labeling Agents For Mass Spectrometry Comprising Tertiary Amines
  • Method Of Isotope Labeling And Determining Protein Synthesis, Quantitation And Protein Expression
  • Multiparameter Analysis For Predictive Medicine
  • High Sensitivity Quantitation Of Peptides By Mass Spectrometry
  • Endometrial Phase Or Endometrial Cancer Biomarkers
  • Systems And Methods For Measuring Translation Activity In Viable Cells
  • Mass Spectrometric Analysis
  • Multiparameter Analysis For Predictive Medicine
  • Isobarically Labeled Analytes And Fragment Ions Derived Therefrom
  • Proteomic Analysis
  • Labeling Of Proteomic Samples During Proteolysis For Quantitation And Sample Multiplexing
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/13690

    DOI

    http://dx.doi.org/10.1038/13690

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1029022565

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10504701


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Affinity Labels", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatography, Liquid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Isotope Labeling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mass Spectrometry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteins", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Molecular Biotechnology, University of Washington, Box 357730, Seattle WA 98195-7730, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gygi", 
            "givenName": "S P", 
            "type": "Person"
          }, 
          {
            "familyName": "Rist", 
            "givenName": "B", 
            "id": "sg:person.0627330757.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627330757.35"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Gerber", 
            "givenName": "S A", 
            "id": "sg:person.0713324153.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713324153.90"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Turecek", 
            "givenName": "F", 
            "id": "sg:person.01323231721.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323231721.61"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Gelb", 
            "givenName": "M H", 
            "id": "sg:person.0627351573.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627351573.12"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Aebersold", 
            "givenName": "R", 
            "id": "sg:person.015313356237.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313356237.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/mas.1280110402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006125388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mas.1280110402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006125388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.92.11.5072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008013511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150191045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010521812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150191045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010521812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150180808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011551115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150180808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011551115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/10890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012772847", 
              "https://doi.org/10.1038/10890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/10890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012772847", 
              "https://doi.org/10.1038/10890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.93.25.14440", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015989129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/27.1.69", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017605455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/1044-0305(94)80016-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018629105", 
              "https://doi.org/10.1016/1044-0305(94)80016-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/1044-0305(94)80016-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018629105", 
              "https://doi.org/10.1016/1044-0305(94)80016-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150180810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021732427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150180810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021732427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(00)81845-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024010988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.19.3.1720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025467756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9525(00)88980-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031668396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1522-2683(19990201)20:2<310::aid-elps310>3.0.co;2-m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041013162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1522-2683(19990201)20:2<310::aid-elps310>3.0.co;2-m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041013162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150171106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045817463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.1150171106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045817463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1098-939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049107556", 
              "https://doi.org/10.1038/nbt1098-939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.96.12.6591", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049321676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac00096a002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054971699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac961155l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055073200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac961155l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055073200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac970488v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055074124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac970488v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055074124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac9806005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055075465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac9806005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055075465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja982878k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055870636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.278.5338.680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062558446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082573070", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-10", 
        "datePublishedReg": "1999-10-01", 
        "description": "We describe an approach for the accurate quantification and concurrent sequence identification of the individual proteins within complex mixtures. The method is based on a class of new chemical reagents termed isotope-coded affinity tags (ICATs) and tandem mass spectrometry. Using this strategy, we compared protein expression in the yeast Saccharomyces cerevisiae, using either ethanol or galactose as a carbon source. The measured differences in protein expression correlated with known yeast metabolic function under glucose-repressed conditions. The method is redundant if multiple cysteinyl residues are present, and the relative quantification is highly accurate because it is based on stable isotope dilution techniques. The ICAT approach should provide a widely applicable means to compare quantitatively global protein expression in cells and tissues.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/13690", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2439911", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2439227", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2684527", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "name": "Quantitative analysis of complex protein mixtures using isotope-coded\naffinity tags", 
        "pagination": "994-999", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8a41f0b6587f886d7373784fb9f5a011fe195774946b6b994d580b9d00e0c943"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10504701"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/13690"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1029022565"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/13690", 
          "https://app.dimensions.ai/details/publication/pub.1029022565"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87115_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nbt/journal/v17/n10/full/nbt1099_994.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/13690'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/13690'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/13690'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/13690'


     

    This table displays all metadata directly associated to this object as RDF triples.

    198 TRIPLES      21 PREDICATES      58 URIs      27 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/13690 schema:about N08331bbe148f492198491c20e048b4e0
    2 N78818c55b1e441249959c7974b2eab83
    3 Nd728375f1b434b91bdbdf60f44e33305
    4 Nd800327d56b24f0e8a0e30c6677fec9b
    5 Nf3acf8949e1b49918b853252938103e1
    6 Nf4bbf32917b74c2e92e64ca6a0dfb6ac
    7 anzsrc-for:06
    8 anzsrc-for:0601
    9 schema:author Ndf7bb418674341928af716253ca309cd
    10 schema:citation sg:pub.10.1016/1044-0305(94)80016-2
    11 sg:pub.10.1038/10890
    12 sg:pub.10.1038/nbt1098-939
    13 https://app.dimensions.ai/details/publication/pub.1082573070
    14 https://doi.org/10.1002/(sici)1522-2683(19990201)20:2<310::aid-elps310>3.0.co;2-m
    15 https://doi.org/10.1002/elps.1150171106
    16 https://doi.org/10.1002/elps.1150180808
    17 https://doi.org/10.1002/elps.1150180810
    18 https://doi.org/10.1002/elps.1150191045
    19 https://doi.org/10.1002/mas.1280110402
    20 https://doi.org/10.1016/s0092-8674(00)81845-0
    21 https://doi.org/10.1016/s0168-9525(00)88980-5
    22 https://doi.org/10.1021/ac00096a002
    23 https://doi.org/10.1021/ac961155l
    24 https://doi.org/10.1021/ac970488v
    25 https://doi.org/10.1021/ac9806005
    26 https://doi.org/10.1021/ja982878k
    27 https://doi.org/10.1073/pnas.92.11.5072
    28 https://doi.org/10.1073/pnas.93.25.14440
    29 https://doi.org/10.1073/pnas.96.12.6591
    30 https://doi.org/10.1093/nar/27.1.69
    31 https://doi.org/10.1126/science.278.5338.680
    32 https://doi.org/10.1128/mcb.19.3.1720
    33 schema:datePublished 1999-10
    34 schema:datePublishedReg 1999-10-01
    35 schema:description We describe an approach for the accurate quantification and concurrent sequence identification of the individual proteins within complex mixtures. The method is based on a class of new chemical reagents termed isotope-coded affinity tags (ICATs) and tandem mass spectrometry. Using this strategy, we compared protein expression in the yeast Saccharomyces cerevisiae, using either ethanol or galactose as a carbon source. The measured differences in protein expression correlated with known yeast metabolic function under glucose-repressed conditions. The method is redundant if multiple cysteinyl residues are present, and the relative quantification is highly accurate because it is based on stable isotope dilution techniques. The ICAT approach should provide a widely applicable means to compare quantitatively global protein expression in cells and tissues.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree false
    39 schema:isPartOf N19e4dee70ff14c0fad06d47385891b6d
    40 Nae08e52631f04849b58929721c7cbc94
    41 sg:journal.1115214
    42 schema:name Quantitative analysis of complex protein mixtures using isotope-coded affinity tags
    43 schema:pagination 994-999
    44 schema:productId N290c0cf96c03478d952f8571a8289529
    45 N4a5145056ee245ce94417e2075c8de8e
    46 N5aa09a7f5f2f4afd9550ec48aa3d2778
    47 Nc48780de6de24d7ca83061eb65649a4c
    48 Nd595c1c38b774b44b1f1a7d816a08244
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029022565
    50 https://doi.org/10.1038/13690
    51 schema:sdDatePublished 2019-04-11T12:27
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher N0ac8561fa6f943be8262b03611139abe
    54 schema:url http://www.nature.com/nbt/journal/v17/n10/full/nbt1099_994.html
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N061a6081fd07489899b27ca61d4ddf09 schema:name Department of Molecular Biotechnology, University of Washington, Box 357730, Seattle WA 98195-7730, USA.
    59 rdf:type schema:Organization
    60 N08331bbe148f492198491c20e048b4e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    61 schema:name Isotope Labeling
    62 rdf:type schema:DefinedTerm
    63 N0ac8561fa6f943be8262b03611139abe schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 N19e4dee70ff14c0fad06d47385891b6d schema:issueNumber 10
    66 rdf:type schema:PublicationIssue
    67 N2145ff59e2d74cf6a920c51b8f2508c2 rdf:first sg:person.0713324153.90
    68 rdf:rest N4fb18904f4c5400e82e2ecb55dac5c8a
    69 N290c0cf96c03478d952f8571a8289529 schema:name doi
    70 schema:value 10.1038/13690
    71 rdf:type schema:PropertyValue
    72 N4a5145056ee245ce94417e2075c8de8e schema:name pubmed_id
    73 schema:value 10504701
    74 rdf:type schema:PropertyValue
    75 N4fb18904f4c5400e82e2ecb55dac5c8a rdf:first sg:person.01323231721.61
    76 rdf:rest N86a2a1282fda4fc297edf3ac9abb1766
    77 N5aa09a7f5f2f4afd9550ec48aa3d2778 schema:name readcube_id
    78 schema:value 8a41f0b6587f886d7373784fb9f5a011fe195774946b6b994d580b9d00e0c943
    79 rdf:type schema:PropertyValue
    80 N78818c55b1e441249959c7974b2eab83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    81 schema:name Amino Acid Sequence
    82 rdf:type schema:DefinedTerm
    83 N86a2a1282fda4fc297edf3ac9abb1766 rdf:first sg:person.0627351573.12
    84 rdf:rest Ne3f94a0f5ddb4e35820cc3ae7735ed1e
    85 Nae08e52631f04849b58929721c7cbc94 schema:volumeNumber 17
    86 rdf:type schema:PublicationVolume
    87 Nc48780de6de24d7ca83061eb65649a4c schema:name dimensions_id
    88 schema:value pub.1029022565
    89 rdf:type schema:PropertyValue
    90 Nccfb58002bc8462787a713aa15f1d2af rdf:first sg:person.0627330757.35
    91 rdf:rest N2145ff59e2d74cf6a920c51b8f2508c2
    92 Nd374fc24c2ed47d8bdabd7e1c14afa59 schema:affiliation N061a6081fd07489899b27ca61d4ddf09
    93 schema:familyName Gygi
    94 schema:givenName S P
    95 rdf:type schema:Person
    96 Nd595c1c38b774b44b1f1a7d816a08244 schema:name nlm_unique_id
    97 schema:value 9604648
    98 rdf:type schema:PropertyValue
    99 Nd728375f1b434b91bdbdf60f44e33305 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Mass Spectrometry
    101 rdf:type schema:DefinedTerm
    102 Nd800327d56b24f0e8a0e30c6677fec9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Affinity Labels
    104 rdf:type schema:DefinedTerm
    105 Ndf7bb418674341928af716253ca309cd rdf:first Nd374fc24c2ed47d8bdabd7e1c14afa59
    106 rdf:rest Nccfb58002bc8462787a713aa15f1d2af
    107 Ne3f94a0f5ddb4e35820cc3ae7735ed1e rdf:first sg:person.015313356237.76
    108 rdf:rest rdf:nil
    109 Nf3acf8949e1b49918b853252938103e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Proteins
    111 rdf:type schema:DefinedTerm
    112 Nf4bbf32917b74c2e92e64ca6a0dfb6ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Chromatography, Liquid
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Biological Sciences
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Biochemistry and Cell Biology
    120 rdf:type schema:DefinedTerm
    121 sg:grant.2439227 http://pending.schema.org/fundedItem sg:pub.10.1038/13690
    122 rdf:type schema:MonetaryGrant
    123 sg:grant.2439911 http://pending.schema.org/fundedItem sg:pub.10.1038/13690
    124 rdf:type schema:MonetaryGrant
    125 sg:grant.2684527 http://pending.schema.org/fundedItem sg:pub.10.1038/13690
    126 rdf:type schema:MonetaryGrant
    127 sg:journal.1115214 schema:issn 1087-0156
    128 1546-1696
    129 schema:name Nature Biotechnology
    130 rdf:type schema:Periodical
    131 sg:person.01323231721.61 schema:familyName Turecek
    132 schema:givenName F
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323231721.61
    134 rdf:type schema:Person
    135 sg:person.015313356237.76 schema:familyName Aebersold
    136 schema:givenName R
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313356237.76
    138 rdf:type schema:Person
    139 sg:person.0627330757.35 schema:familyName Rist
    140 schema:givenName B
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627330757.35
    142 rdf:type schema:Person
    143 sg:person.0627351573.12 schema:familyName Gelb
    144 schema:givenName M H
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627351573.12
    146 rdf:type schema:Person
    147 sg:person.0713324153.90 schema:familyName Gerber
    148 schema:givenName S A
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713324153.90
    150 rdf:type schema:Person
    151 sg:pub.10.1016/1044-0305(94)80016-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018629105
    152 https://doi.org/10.1016/1044-0305(94)80016-2
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/10890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012772847
    155 https://doi.org/10.1038/10890
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/nbt1098-939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049107556
    158 https://doi.org/10.1038/nbt1098-939
    159 rdf:type schema:CreativeWork
    160 https://app.dimensions.ai/details/publication/pub.1082573070 schema:CreativeWork
    161 https://doi.org/10.1002/(sici)1522-2683(19990201)20:2<310::aid-elps310>3.0.co;2-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1041013162
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1002/elps.1150171106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045817463
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1002/elps.1150180808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011551115
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1002/elps.1150180810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021732427
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1002/elps.1150191045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010521812
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1002/mas.1280110402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006125388
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/s0092-8674(00)81845-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024010988
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/s0168-9525(00)88980-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031668396
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1021/ac00096a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054971699
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1021/ac961155l schema:sameAs https://app.dimensions.ai/details/publication/pub.1055073200
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1021/ac970488v schema:sameAs https://app.dimensions.ai/details/publication/pub.1055074124
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1021/ac9806005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055075465
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1021/ja982878k schema:sameAs https://app.dimensions.ai/details/publication/pub.1055870636
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1073/pnas.92.11.5072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008013511
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1073/pnas.93.25.14440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015989129
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1073/pnas.96.12.6591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049321676
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1093/nar/27.1.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017605455
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1126/science.278.5338.680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558446
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1128/mcb.19.3.1720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025467756
    198 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...