Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-10

AUTHORS

S Singh-Gasson, R D Green, Y Yue, C Nelson, F Blattner, M R Sussman, F Cerrina

ABSTRACT

Oligonucleotide microarrays, also called "DNA chips," are currently made by a light-directed chemistry that requires a large number of photolithographic masks for each chip. Here we describe a maskless array synthesizer (MAS) that replaces the chrome masks with virtual masks generated on a computer, which are relayed to a digital micromirror array. A 1:1 reflective imaging system forms an ultraviolet image of the virtual mask on the active surface of the glass substrate, which is mounted in a flow cell reaction chamber connected to a DNA synthesizer. Programmed chemical coupling cycles follow light exposure, and these steps are repeated with different virtual masks to grow desired oligonucleotides in a selected pattern. This instrument has been used to synthesize oligonucleotide microarrays containing more than 76,000 features measuring 16 microm 2. The oligonucleotides were synthesized at high repetitive yield and, after hybridization, could readily discriminate single-base pair mismatches. The MAS is adaptable to the fabrication of DNA chips containing probes for thousands of genes, as well as any other solid-phase combinatorial chemistry to be performed in high-density microarrays. More... »

PAGES

974-978

Journal

TITLE

Nature Biotechnology

ISSUE

10

VOLUME

17

Author Affiliations

Related Patents

  • Multi-Through Hole Testing Plate For High Throughput Screening
  • Insertion Sequence-Free Bacteria
  • Method And Device For The Integrated Synthesis And Analysis Of Analytes On A Support
  • Nanoliter Array Loading
  • Lens System For Maskless Photolithography
  • C-3′ Protected Monomeric Nucleotides And Synthesis Of Oligonucleotides On Solid Support
  • Maskless Photolithography Using Plasma Displays
  • Ultra-Sensitive Detection Systems Using Alterable Peptide Tags
  • High Magnification Spectral Reflectance Biosensing With Discrete Light Sources
  • Device For Chemical And Biochemical Reactions Using Photo-Generated Reagents
  • Lithographic Apparatus And Device Manufacturing Method
  • Rna-Mediated Gene Assembly From Dna Oligonucleotides
  • Procedure For Structural Characterization Of A Recombinant Polyclonal Protein Or A Polyclonal Cell Line
  • Using Phylogenetic Probes For Quantification Of Stable Isotope Labeling And Microbial Community Analysis
  • Whole Proteome Tiling Microarrays
  • Single Molecule Arrays For Genetic And Chemical Analysis
  • Support For A Method For Determining An Analyte And A Method For Producing The Support
  • Methods For Filing A Sample Array By Droplet Dragging
  • Devices And Methods For Detecting Bio-Analytes Using Optically Decipherable Patterns
  • Surface Plasmon Resonance Compatible Carbon Thin Films
  • Mapping Of Genomic Interactions
  • Rna Monomers Containing O-Acetal Levulinyl Ester Groups And Their Use In Rna Microarrays
  • Patterning And Alteration Of Molecules
  • Functionated Photoacid Generator And Functionated Polymer System For Biological Microarray Synthesis
  • Bacteria With Reduced Genome
  • Digital Photolithography System For Making Smooth Diagonal Components
  • Maskless Exposure System
  • Light Modulation Device And System
  • Particulate Compositions For Chemical Synthesis
  • High Resolution Point Array
  • Microfluidic Transfer Pin
  • Microfluidic Transfer Pin
  • Anti-Rhesus D Recombinant Polyclonal Antibody
  • De Novo Synthesized Gene Libraries
  • De Novo Synthesized Gene Libraries
  • Device For Chemical And Biochemical Reactions Using Photo-Generated Reagents
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/13664

    DOI

    http://dx.doi.org/10.1038/13664

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002141889

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10504697


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Light", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Hybridization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Photochemistry", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Wisconsin\u2013Madison", 
              "id": "https://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Center for NanoTechnology, Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Singh-Gasson", 
            "givenName": "S", 
            "id": "sg:person.0610443674.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610443674.48"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Green", 
            "givenName": "R D", 
            "id": "sg:person.01215111643.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215111643.11"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Yue", 
            "givenName": "Y", 
            "type": "Person"
          }, 
          {
            "familyName": "Nelson", 
            "givenName": "C", 
            "type": "Person"
          }, 
          {
            "familyName": "Blattner", 
            "givenName": "F", 
            "id": "sg:person.010103076757.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010103076757.01"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Sussman", 
            "givenName": "M R", 
            "id": "sg:person.0750644256.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750644256.93"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Cerrina", 
            "givenName": "F", 
            "id": "sg:person.013406601113.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013406601113.87"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1117/12.7978742", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001867778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.91.11.5022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050061899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja964427a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055866643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja964427a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055866643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.587506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062197553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1990438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062516646"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-10", 
        "datePublishedReg": "1999-10-01", 
        "description": "Oligonucleotide microarrays, also called \"DNA chips,\" are currently made by a light-directed chemistry that requires a large number of photolithographic masks for each chip. Here we describe a maskless array synthesizer (MAS) that replaces the chrome masks with virtual masks generated on a computer, which are relayed to a digital micromirror array. A 1:1 reflective imaging system forms an ultraviolet image of the virtual mask on the active surface of the glass substrate, which is mounted in a flow cell reaction chamber connected to a DNA synthesizer. Programmed chemical coupling cycles follow light exposure, and these steps are repeated with different virtual masks to grow desired oligonucleotides in a selected pattern. This instrument has been used to synthesize oligonucleotide microarrays containing more than 76,000 features measuring 16 microm 2. The oligonucleotides were synthesized at high repetitive yield and, after hybridization, could readily discriminate single-base pair mismatches. The MAS is adaptable to the fabrication of DNA chips containing probes for thousands of genes, as well as any other solid-phase combinatorial chemistry to be performed in high-density microarrays.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/13664", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "name": "Maskless fabrication of light-directed oligonucleotide microarrays using\na digital micromirror array", 
        "pagination": "974-978", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0a333ede7016d51de659ea2d2748b91789e24d4a57b6a2ed0f1a58e5d69e06e9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10504697"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/13664"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002141889"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/13664", 
          "https://app.dimensions.ai/details/publication/pub.1002141889"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87078_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nbt/journal/v17/n10/full/nbt1099_974.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/13664'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/13664'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/13664'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/13664'


     

    This table displays all metadata directly associated to this object as RDF triples.

    138 TRIPLES      21 PREDICATES      39 URIs      26 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/13664 schema:about N0e83335ddba9438e81b1470b29091221
    2 N0ec4cafc54c84f929242c556f9f3825e
    3 N2e5e45f08a7343eab656a8539d64f704
    4 N79c973b0895c44e99beb7d0b61d8e898
    5 N8f3e7b429b894fd98dc8908b9bb763f8
    6 anzsrc-for:03
    7 anzsrc-for:0306
    8 schema:author N40127d5f263d45cdafcf80453a5828a2
    9 schema:citation https://doi.org/10.1021/ja964427a
    10 https://doi.org/10.1073/pnas.91.11.5022
    11 https://doi.org/10.1116/1.587506
    12 https://doi.org/10.1117/12.7978742
    13 https://doi.org/10.1126/science.1990438
    14 schema:datePublished 1999-10
    15 schema:datePublishedReg 1999-10-01
    16 schema:description Oligonucleotide microarrays, also called "DNA chips," are currently made by a light-directed chemistry that requires a large number of photolithographic masks for each chip. Here we describe a maskless array synthesizer (MAS) that replaces the chrome masks with virtual masks generated on a computer, which are relayed to a digital micromirror array. A 1:1 reflective imaging system forms an ultraviolet image of the virtual mask on the active surface of the glass substrate, which is mounted in a flow cell reaction chamber connected to a DNA synthesizer. Programmed chemical coupling cycles follow light exposure, and these steps are repeated with different virtual masks to grow desired oligonucleotides in a selected pattern. This instrument has been used to synthesize oligonucleotide microarrays containing more than 76,000 features measuring 16 microm 2. The oligonucleotides were synthesized at high repetitive yield and, after hybridization, could readily discriminate single-base pair mismatches. The MAS is adaptable to the fabrication of DNA chips containing probes for thousands of genes, as well as any other solid-phase combinatorial chemistry to be performed in high-density microarrays.
    17 schema:genre research_article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf Nc443fb5969a4442d980adea92a69a1a0
    21 Nff954625c331422d9d3599fc325951df
    22 sg:journal.1115214
    23 schema:name Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array
    24 schema:pagination 974-978
    25 schema:productId N43ecac02145c425e83c0d63be65985ec
    26 N43ef26b8f01540fabaad94dc9023d655
    27 N448cd68ec6a142b3bda49caa802a0223
    28 Na61366e1168c45eb8f81d52c07dab2c8
    29 Nd7e432f88ad4468ea74bb416f82e239c
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002141889
    31 https://doi.org/10.1038/13664
    32 schema:sdDatePublished 2019-04-11T12:20
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher Nb7a13c48a2df439a8dec8aeb16e99c30
    35 schema:url http://www.nature.com/nbt/journal/v17/n10/full/nbt1099_974.html
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N0e83335ddba9438e81b1470b29091221 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    40 schema:name Oligonucleotides
    41 rdf:type schema:DefinedTerm
    42 N0ec4cafc54c84f929242c556f9f3825e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    43 schema:name Base Sequence
    44 rdf:type schema:DefinedTerm
    45 N22e15b1c9aa14f61a70327559efc922b schema:familyName Yue
    46 schema:givenName Y
    47 rdf:type schema:Person
    48 N2e5e45f08a7343eab656a8539d64f704 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    49 schema:name Photochemistry
    50 rdf:type schema:DefinedTerm
    51 N36d85943afc849dd9b5afb9f86410652 rdf:first sg:person.010103076757.01
    52 rdf:rest N9bb7a918ff1b4cb480401f4fa05275a2
    53 N3cd0cc65b5d74666bc74780a352830d8 rdf:first Nbea8fbbd6c19487e9000692e1f02bb2b
    54 rdf:rest N36d85943afc849dd9b5afb9f86410652
    55 N40127d5f263d45cdafcf80453a5828a2 rdf:first sg:person.0610443674.48
    56 rdf:rest Nd02bee6df59e40eba03854be6fc0a875
    57 N43ecac02145c425e83c0d63be65985ec schema:name nlm_unique_id
    58 schema:value 9604648
    59 rdf:type schema:PropertyValue
    60 N43ef26b8f01540fabaad94dc9023d655 schema:name readcube_id
    61 schema:value 0a333ede7016d51de659ea2d2748b91789e24d4a57b6a2ed0f1a58e5d69e06e9
    62 rdf:type schema:PropertyValue
    63 N448cd68ec6a142b3bda49caa802a0223 schema:name dimensions_id
    64 schema:value pub.1002141889
    65 rdf:type schema:PropertyValue
    66 N58b8624ccfea453cb80630e3117f533b rdf:first N22e15b1c9aa14f61a70327559efc922b
    67 rdf:rest N3cd0cc65b5d74666bc74780a352830d8
    68 N79c973b0895c44e99beb7d0b61d8e898 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    69 schema:name Nucleic Acid Hybridization
    70 rdf:type schema:DefinedTerm
    71 N8f3e7b429b894fd98dc8908b9bb763f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Light
    73 rdf:type schema:DefinedTerm
    74 N9bb7a918ff1b4cb480401f4fa05275a2 rdf:first sg:person.0750644256.93
    75 rdf:rest Na4ff588a2ec64ad3983fdfe5918114da
    76 Na4ff588a2ec64ad3983fdfe5918114da rdf:first sg:person.013406601113.87
    77 rdf:rest rdf:nil
    78 Na61366e1168c45eb8f81d52c07dab2c8 schema:name pubmed_id
    79 schema:value 10504697
    80 rdf:type schema:PropertyValue
    81 Nb7a13c48a2df439a8dec8aeb16e99c30 schema:name Springer Nature - SN SciGraph project
    82 rdf:type schema:Organization
    83 Nbea8fbbd6c19487e9000692e1f02bb2b schema:familyName Nelson
    84 schema:givenName C
    85 rdf:type schema:Person
    86 Nc443fb5969a4442d980adea92a69a1a0 schema:issueNumber 10
    87 rdf:type schema:PublicationIssue
    88 Nd02bee6df59e40eba03854be6fc0a875 rdf:first sg:person.01215111643.11
    89 rdf:rest N58b8624ccfea453cb80630e3117f533b
    90 Nd7e432f88ad4468ea74bb416f82e239c schema:name doi
    91 schema:value 10.1038/13664
    92 rdf:type schema:PropertyValue
    93 Nff954625c331422d9d3599fc325951df schema:volumeNumber 17
    94 rdf:type schema:PublicationVolume
    95 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Chemical Sciences
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Physical Chemistry (incl. Structural)
    100 rdf:type schema:DefinedTerm
    101 sg:journal.1115214 schema:issn 1087-0156
    102 1546-1696
    103 schema:name Nature Biotechnology
    104 rdf:type schema:Periodical
    105 sg:person.010103076757.01 schema:familyName Blattner
    106 schema:givenName F
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010103076757.01
    108 rdf:type schema:Person
    109 sg:person.01215111643.11 schema:familyName Green
    110 schema:givenName R D
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215111643.11
    112 rdf:type schema:Person
    113 sg:person.013406601113.87 schema:familyName Cerrina
    114 schema:givenName F
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013406601113.87
    116 rdf:type schema:Person
    117 sg:person.0610443674.48 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
    118 schema:familyName Singh-Gasson
    119 schema:givenName S
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610443674.48
    121 rdf:type schema:Person
    122 sg:person.0750644256.93 schema:familyName Sussman
    123 schema:givenName M R
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750644256.93
    125 rdf:type schema:Person
    126 https://doi.org/10.1021/ja964427a schema:sameAs https://app.dimensions.ai/details/publication/pub.1055866643
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1073/pnas.91.11.5022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050061899
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1116/1.587506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062197553
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1117/12.7978742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001867778
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1126/science.1990438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062516646
    135 rdf:type schema:CreativeWork
    136 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
    137 schema:name Center for NanoTechnology, Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706, USA.
    138 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...