Genome-wide analysis of DNA copy-number changes using cDNA microarrays View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-09

AUTHORS

Jonathan R. Pollack, Charles M. Perou, Ash A. Alizadeh, Michael B. Eisen, Alexander Pergamenschikov, Cheryl F. Williams, Stefanie S. Jeffrey, David Botstein, Patrick O. Brown

ABSTRACT

Gene amplifications and deletions frequently contribute to tumorigenesis. Characterization of these DNA copy-number changes is important for both the basic understanding of cancer and its diagnosis. Comparative genomic hybridization (CGH) was developed to survey DNA copy-number variations across a whole genome. With CGH, differentially labelled test and reference genomic DNAs are co-hybridized to normal metaphase chromosomes, and fluorescence ratios along the length of chromosomes provide a cytogenetic representation of DNA copy-number variation. CGH, however, has a limited ( approximately 20 Mb) mapping resolution, and higher-resolution techniques, such as fluorescence in situ hybridization (FISH), are prohibitively labour-intensive on a genomic scale. Array-based CGH, in which fluorescence ratios at arrayed DNA elements provide a locus-by-locus measure of DNA copy-number variation, represents another means of achieving increased mapping resolution. Published array CGH methods have relied on large genomic clone (for example BAC) array targets and have covered only a small fraction of the human genome. cDNAs representing over 30,000 radiation-hybrid (RH)-mapped human genes provide an alternative and readily available genomic resource for mapping DNA copy-number changes. Although cDNA microarrays have been used extensively to characterize variation in human gene expression, human genomic DNA is a far more complex mixture than the mRNA representation of human cells. Therefore, analysis of DNA copy-number variation using cDNA microarrays would require a sensitivity of detection an order of magnitude greater than has been routinely reported. We describe here a cDNA microarray-based CGH method, and its application to DNA copy-number variation analysis in breast cancer cell lines and tumours. Using this assay, we were able to identify gene amplifications and deletions genome-wide and with high resolution, and compare alterations in DNA copy number and gene expression. More... »

PAGES

ng0999_41

Journal

TITLE

Nature Genetics

ISSUE

1

VOLUME

23

Author Affiliations

Related Patents

  • Comparative Genomic Hybridization Assays Using Immobilized Oligonucleotide Features And Compositions For Practicing The Same
  • Gene Copy Number Profiling
  • Integrated Sensor Arrays For Biological And Chemical Analysis
  • Methods And Apparatus For Measuring Analytes Using Large Scale Fet Arrays
  • Chemical Sensor Array With Leakage Compensation Circuit
  • Chemically Sensitive Sensor With Lightly Doped Drains
  • Titanium Nitride As Sensing Layer For Microwell Structure
  • Capillary Array And Related Methods
  • Gene Discovery Using Microarrays
  • Methods And Apparatus For Measuring Analytes
  • Methods And Apparatus For Detecting Molecular Interactions Using Fet Arrays
  • Self-Aligned Well Structures For Low-Noise Chemical Sensors
  • Array Configuration And Readout Scheme
  • Methods And Compositions For Whole Genome Amplification And Genotyping
  • High Density Sensor Array Without Wells
  • Integrated Sensor Arrays For Biological And Chemical Analysis
  • Patient Stratification And Determining Clinical Outcome For Cancer Patients
  • Imaging Microarrays
  • Chemically Sensitive Sensors With Sample And Hold Capacitors
  • Reagents And Methods For Use In Cancer Diagnosis, Classification And Therapy
  • Coupled Heterogeneous Devices For Ph Sensing
  • Method And System For Delta Double Sampling
  • Methods And Apparatus For Measuring Analytes
  • System For Reducing Noise In A Chemical Sensor Array
  • Chemical Detection Device Having Multiple Flow Channels
  • Visualizing Expression Data On Chromosomal Graphic Schemes
  • Methods And Systems For Point Of Use Removal Of Sacrificial Material
  • Systems, Tools And Methods For Focus And Context Viewing Of Large Collections Of Graphs
  • Chemical Sensor With Protruded Sensor Surface
  • System For Reducing Noise In A Chemical Sensor Array
  • Methods And Apparatus For Measuring Analytes
  • Methods And Compositions For Whole Genome Amplification And Genotyping
  • Chemically-Sensitive Field Effect Transistor Based Pixel Array With Protection Diodes
  • Ion-Sensing Charge-Accumulation Circuits And Methods
  • Compositions, Kits, And Methods For Identification, Assessment, Prevention And Treatment Of Pancreatic Adenocarcinoma In Humans
  • Chemical Sensor With Sidewall Spacer Sensor Surface
  • System For Reducing Noise In A Chemical Sensor Array
  • Methods For Calibrating An Array Of Chemically-Sensitive Sensors
  • Apparatus For Measuring Analytes Including Chemical Sensor Array
  • Ccd-Based Multi-Transistor Active Pixel Sensor Array
  • Methods And System For Simultaneous Visualization And Manipulation Of Multiple Data Types
  • Active Chemically-Sensitive Sensors With In-Sensor Current Sources
  • Methods For Nucleic Acid Mapping And Identification Of Fine-Structural-Variations In Nucleic Acids And Utilities
  • Active Chemically-Sensitive Sensors
  • Methods And Apparatus For Measuring Analytes Using Large Scale Fet Arrays
  • Ion-Sensing Charge-Accumulation Circuits And Methods
  • System For Reducing Noise In A Chemical Sensor Array
  • Chemical Sensor Array Having Multiple Sensors Per Well
  • Chemical Sensor With Conductive Cup-Shaped Sensor Surface
  • Reagents And Methods For Use In Cancer Diagnosis, Classification And Therapy
  • Methods And Apparatus For High Speed Operation Of A Chemically-Sensitive Sensor Array
  • Method Of Identifying Virtual Representations Of Nucleotide Sequences
  • Chemical Sensor With Consistent Sensor Surface Areas
  • Compositions, Kits And Methods For Identification, Assessment, Prevention And Therapy Of Cancer
  • Capillary Array And Related Methods
  • Chemical Sensor With Sidewall Sensor Surface
  • Method And Apparatus For Identifying Defects In A Chemical Sensor Array
  • Chemfet Sensor Including Floating Gate
  • High Data Rate Integrated Circuit With Power Management
  • Reagents And Methods For Use In Cancer Diagnosis, Classification And Therapy
  • Active Chemically-Sensitive Sensors With In-Sensor Current Sources
  • Capacitive Charge Pump
  • Column Adc
  • Active Chemically-Sensitive Sensors With Correlated Double Sampling
  • Reagents And Methods For Use In Cancer Diagnosis, Classification And Therapy
  • Method Of Classifying A Breast Cancer Instrinsic Subtype
  • Capillary Array And Related Methods
  • Method For Analysing Nucleic Acids
  • Identification Of An Amplified Gene And Target For Drug Intervention
  • Methods And Apparatus For Measuring Analytes
  • Methods For Manufacturing Well Structures For Low-Noise Chemical Sensors
  • Chemical Device With Thin Conductive Element
  • Methods For Nucleic Acid Mapping And Identification Of Fine-Structural-Variations In Nucleic Acids
  • Method Of Characterizing Quality Of Hybridized Cgh Arrays
  • Comparative Genomic Hybridization Assays Using Immobilized Oligonucleotide Targets With Initially Small Sample Sizes And Compositions For Practicing The Same
  • Methods And Systems For Point Of Use Removal Of Sacrificial Material
  • Methods And Apparatus For Measuring Analytes Using Large Scale Fet Arrays
  • Annexin A9 (Anxa9) Biomarker And Therapeutic Target In Epithelial Cancer
  • Active Chemically-Sensitive Sensors With Source Follower Amplifier
  • Two-Transistor Pixel Array
  • Comparative Genomic Hybridization Assays Using Immobilized Oligonucleotide Features And Compositions For Practicing The Same
  • Chemically-Sensitive Sample And Hold Sensors
  • Methods For Operating Chemically Sensitive Sensors With Sample And Hold Capacitors
  • Methods And Apparatus For Measuring Analytes Using Large Scale Fet Arrays
  • Method And System For Delta Double Sampling
  • Chemical Sensors With Consistent Sensor Surface Areas
  • Methods And Apparatus For Measuring Analytes
  • Chemical Sensor With Sidewall Spacer Sensor Surface
  • Methods And Apparatus For Measuring Analytes Using Large Scale Fet Arrays
  • Reliable Fluorescence Correction Method For Two-Color Measurement Fluorescence System
  • Chemical Sensor With Protruded Sensor Surface
  • Capillary Array And Related Methods
  • Capillary Array And Related Methods
  • Detection Of Chromosomal Disorders
  • Method And System For Delta Double Sampling
  • Active Chemically-Sensitive Sensors With Reset Switch
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/12640

    DOI

    http://dx.doi.org/10.1038/12640

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014821425

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10471496


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosomes, Human, Pair 17", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Complementary", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Dosage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Library", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, erbB-2", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Leukocytes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Hybridization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Physical Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tumor Cells, Cultured", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "X Chromosome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Howard Hughes Medical Institute, Stanford Medical Center, Stanford, California 94305, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pollack", 
            "givenName": "Jonathan R.", 
            "id": "sg:person.013757432632.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013757432632.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Genetics, Stanford Medical Center, Stanford, California 94305, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Perou", 
            "givenName": "Charles M.", 
            "id": "sg:person.0614405557.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614405557.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Biochemistry, Stanford Medical Center, Stanford, California 94305, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alizadeh", 
            "givenName": "Ash A.", 
            "id": "sg:person.01350734042.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350734042.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Genetics, Stanford Medical Center, Stanford, California 94305, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eisen", 
            "givenName": "Michael B.", 
            "id": "sg:person.012502544064.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012502544064.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Genetics, Stanford Medical Center, Stanford, California 94305, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pergamenschikov", 
            "givenName": "Alexander", 
            "id": "sg:person.0606110074.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606110074.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Genetics, Stanford Medical Center, Stanford, California 94305, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Williams", 
            "givenName": "Cheryl F.", 
            "id": "sg:person.01361055014.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361055014.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Surgery, Stanford Medical Center, Stanford, California 94305, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jeffrey", 
            "givenName": "Stefanie S.", 
            "id": "sg:person.0623224043.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623224043.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Genetics, Stanford Medical Center, Stanford, California 94305, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Botstein", 
            "givenName": "David", 
            "id": "sg:person.01021225500.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021225500.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Howard Hughes Medical Institute, Stanford Medical Center, Stanford, California 94305, USA.", 
                "Department of Biochemistry, Stanford Medical Center, Stanford, California 94305, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brown", 
            "givenName": "Patrick O.", 
            "id": "sg:person.014304415612.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014304415612.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/(sici)1098-2264(199712)20:4<372::aid-gcc8>3.0.co;2-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001118287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/5.3.339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009108975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001090050155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010228321", 
              "https://doi.org/10.1007/s001090050155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1296-457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010987019", 
              "https://doi.org/10.1038/ng1296-457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.89.12.5321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011077656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1196-292", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012147825", 
              "https://doi.org/10.1038/ng1196-292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1520-6408(1998)23:3<215::aid-dvg7>3.0.co;2-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020576936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.91.6.2156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022993456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/2524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026409761", 
              "https://doi.org/10.1038/2524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/2524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026409761", 
              "https://doi.org/10.1038/2524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0895-369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027303331", 
              "https://doi.org/10.1038/ng0895-369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/geno.1996.0351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027783237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.6.7.639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028833356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/geno.1995.1163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034931731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.80.6.1707", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037548980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/geno.1996.0177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037693325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gcc.2870100403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038266174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1098-2264(199712)20:4<399::aid-gcc12>3.0.co;2-i", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040875285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1201065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041282040", 
              "https://doi.org/10.1038/sj.onc.1201065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1201065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041282040", 
              "https://doi.org/10.1038/sj.onc.1201065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.95.8.4487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050813051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1359641", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062477301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2554494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062543708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.270.5235.467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062551475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.274.5287.540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062554572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.277.5328.965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062557688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.278.5338.680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062558446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.282.5389.744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062562946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.283.5398.83", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062563707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1460-2075.1994.tb06386.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082560430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082941410", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083095555", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-09", 
        "datePublishedReg": "1999-09-01", 
        "description": "Gene amplifications and deletions frequently contribute to tumorigenesis. Characterization of these DNA copy-number changes is important for both the basic understanding of cancer and its diagnosis. Comparative genomic hybridization (CGH) was developed to survey DNA copy-number variations across a whole genome. With CGH, differentially labelled test and reference genomic DNAs are co-hybridized to normal metaphase chromosomes, and fluorescence ratios along the length of chromosomes provide a cytogenetic representation of DNA copy-number variation. CGH, however, has a limited ( approximately 20 Mb) mapping resolution, and higher-resolution techniques, such as fluorescence in situ hybridization (FISH), are prohibitively labour-intensive on a genomic scale. Array-based CGH, in which fluorescence ratios at arrayed DNA elements provide a locus-by-locus measure of DNA copy-number variation, represents another means of achieving increased mapping resolution. Published array CGH methods have relied on large genomic clone (for example BAC) array targets and have covered only a small fraction of the human genome. cDNAs representing over 30,000 radiation-hybrid (RH)-mapped human genes provide an alternative and readily available genomic resource for mapping DNA copy-number changes. Although cDNA microarrays have been used extensively to characterize variation in human gene expression, human genomic DNA is a far more complex mixture than the mRNA representation of human cells. Therefore, analysis of DNA copy-number variation using cDNA microarrays would require a sensitivity of detection an order of magnitude greater than has been routinely reported. We describe here a cDNA microarray-based CGH method, and its application to DNA copy-number variation analysis in breast cancer cell lines and tumours. Using this assay, we were able to identify gene amplifications and deletions genome-wide and with high resolution, and compare alterations in DNA copy number and gene expression.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/12640", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1103138", 
            "issn": [
              "1061-4036", 
              "1546-1718"
            ], 
            "name": "Nature Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "name": "Genome-wide analysis of DNA copy-number changes using cDNA microarrays", 
        "pagination": "ng0999_41", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "469d3bdddf88b9cc6a67d9932055db58ab40b3b1ce264918cd06ba1a17e3ba53"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10471496"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9216904"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/12640"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014821425"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/12640", 
          "https://app.dimensions.ai/details/publication/pub.1014821425"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/ng0999_41"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/12640'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/12640'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/12640'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/12640'


     

    This table displays all metadata directly associated to this object as RDF triples.

    290 TRIPLES      21 PREDICATES      76 URIs      38 LITERALS      26 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/12640 schema:about N495a3be7c14e4015b477c84cc86c2d2e
    2 N4e000c83141f4c13915d7595d077db11
    3 N6967055e226b4035bccbc2d097066fa7
    4 N765bf35206bb48ea9907e00880af6f5f
    5 N812741b1b0ab4502977d5fbb8798848e
    6 N862993f0bdec45309cea5873575bee58
    7 N9296e17f485541f597a9947a6d0d4a72
    8 N943c74aa984244748d345383fa80f27f
    9 Nabeafa4379614c34a3f639eaa3584c95
    10 Nb0aebef3659b4c1882e63de655152afd
    11 Nb88c0cf8f00545e2985a20943aabc78c
    12 Nbc1cd68c15474602ab79b81757553f1f
    13 Ncf4a64458b36422e94c4f14cda6c5374
    14 Nd38c721f27574427b92990fd9a015c3e
    15 Ne07f4af1bfa649fda33eb3c535d471f1
    16 Nf1efacecb6084d168659385a9993c524
    17 Nf26f768b6ff94942baba1ae00f833fdb
    18 anzsrc-for:06
    19 anzsrc-for:0604
    20 schema:author N0370f6b3d2d1493b941706d22e88ca52
    21 schema:citation sg:pub.10.1007/s001090050155
    22 sg:pub.10.1038/2524
    23 sg:pub.10.1038/ng0895-369
    24 sg:pub.10.1038/ng1196-292
    25 sg:pub.10.1038/ng1296-457
    26 sg:pub.10.1038/sj.onc.1201065
    27 https://app.dimensions.ai/details/publication/pub.1082941410
    28 https://app.dimensions.ai/details/publication/pub.1083095555
    29 https://doi.org/10.1002/(sici)1098-2264(199712)20:4<372::aid-gcc8>3.0.co;2-z
    30 https://doi.org/10.1002/(sici)1098-2264(199712)20:4<399::aid-gcc12>3.0.co;2-i
    31 https://doi.org/10.1002/(sici)1520-6408(1998)23:3<215::aid-dvg7>3.0.co;2-x
    32 https://doi.org/10.1002/gcc.2870100403
    33 https://doi.org/10.1002/j.1460-2075.1994.tb06386.x
    34 https://doi.org/10.1006/geno.1995.1163
    35 https://doi.org/10.1006/geno.1996.0177
    36 https://doi.org/10.1006/geno.1996.0351
    37 https://doi.org/10.1073/pnas.80.6.1707
    38 https://doi.org/10.1073/pnas.89.12.5321
    39 https://doi.org/10.1073/pnas.91.6.2156
    40 https://doi.org/10.1073/pnas.95.8.4487
    41 https://doi.org/10.1093/hmg/5.3.339
    42 https://doi.org/10.1101/gr.6.7.639
    43 https://doi.org/10.1126/science.1359641
    44 https://doi.org/10.1126/science.2554494
    45 https://doi.org/10.1126/science.270.5235.467
    46 https://doi.org/10.1126/science.274.5287.540
    47 https://doi.org/10.1126/science.277.5328.965
    48 https://doi.org/10.1126/science.278.5338.680
    49 https://doi.org/10.1126/science.282.5389.744
    50 https://doi.org/10.1126/science.283.5398.83
    51 schema:datePublished 1999-09
    52 schema:datePublishedReg 1999-09-01
    53 schema:description Gene amplifications and deletions frequently contribute to tumorigenesis. Characterization of these DNA copy-number changes is important for both the basic understanding of cancer and its diagnosis. Comparative genomic hybridization (CGH) was developed to survey DNA copy-number variations across a whole genome. With CGH, differentially labelled test and reference genomic DNAs are co-hybridized to normal metaphase chromosomes, and fluorescence ratios along the length of chromosomes provide a cytogenetic representation of DNA copy-number variation. CGH, however, has a limited ( approximately 20 Mb) mapping resolution, and higher-resolution techniques, such as fluorescence in situ hybridization (FISH), are prohibitively labour-intensive on a genomic scale. Array-based CGH, in which fluorescence ratios at arrayed DNA elements provide a locus-by-locus measure of DNA copy-number variation, represents another means of achieving increased mapping resolution. Published array CGH methods have relied on large genomic clone (for example BAC) array targets and have covered only a small fraction of the human genome. cDNAs representing over 30,000 radiation-hybrid (RH)-mapped human genes provide an alternative and readily available genomic resource for mapping DNA copy-number changes. Although cDNA microarrays have been used extensively to characterize variation in human gene expression, human genomic DNA is a far more complex mixture than the mRNA representation of human cells. Therefore, analysis of DNA copy-number variation using cDNA microarrays would require a sensitivity of detection an order of magnitude greater than has been routinely reported. We describe here a cDNA microarray-based CGH method, and its application to DNA copy-number variation analysis in breast cancer cell lines and tumours. Using this assay, we were able to identify gene amplifications and deletions genome-wide and with high resolution, and compare alterations in DNA copy number and gene expression.
    54 schema:genre research_article
    55 schema:inLanguage en
    56 schema:isAccessibleForFree false
    57 schema:isPartOf N40d2fc156f2a428885ec1ea7e4b81aa1
    58 N600811eb640445bba159400f61006b2d
    59 sg:journal.1103138
    60 schema:name Genome-wide analysis of DNA copy-number changes using cDNA microarrays
    61 schema:pagination ng0999_41
    62 schema:productId N2581c5c1ff6240e7827cc922e684e552
    63 N8910caac23304e71bd7211c48cbe4a43
    64 Nc059f683f2b64658879bace1e4e48b3f
    65 Nd6ada6005bed4584b930ccdaafac9fe6
    66 Ndffe660138f54eea9c70302f17b3cd22
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014821425
    68 https://doi.org/10.1038/12640
    69 schema:sdDatePublished 2019-04-11T12:27
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher Nfd87d59205a34f16831d74b727019350
    72 schema:url http://www.nature.com/articles/ng0999_41
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N0370f6b3d2d1493b941706d22e88ca52 rdf:first sg:person.013757432632.21
    77 rdf:rest N2dbfc4de08b74a86835c0165d5de6cda
    78 N050bf23c374f4e199ee07f9e174dcf28 rdf:first sg:person.014304415612.51
    79 rdf:rest rdf:nil
    80 N2581c5c1ff6240e7827cc922e684e552 schema:name dimensions_id
    81 schema:value pub.1014821425
    82 rdf:type schema:PropertyValue
    83 N267c22b1c78c4d6398995925284a4714 rdf:first sg:person.0623224043.52
    84 rdf:rest N427a2030a91a4dcdb07a71c852832577
    85 N2dbfc4de08b74a86835c0165d5de6cda rdf:first sg:person.0614405557.39
    86 rdf:rest N9053705e60a640ee965a483154674cda
    87 N40d2fc156f2a428885ec1ea7e4b81aa1 schema:issueNumber 1
    88 rdf:type schema:PublicationIssue
    89 N40f0bb93d3724269a5b91161741efef5 rdf:first sg:person.012502544064.15
    90 rdf:rest Ndf1477fe2b324229904b476f9593f7d8
    91 N427a2030a91a4dcdb07a71c852832577 rdf:first sg:person.01021225500.13
    92 rdf:rest N050bf23c374f4e199ee07f9e174dcf28
    93 N495a3be7c14e4015b477c84cc86c2d2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name DNA, Complementary
    95 rdf:type schema:DefinedTerm
    96 N4e000c83141f4c13915d7595d077db11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Gene Library
    98 rdf:type schema:DefinedTerm
    99 N600811eb640445bba159400f61006b2d schema:volumeNumber 23
    100 rdf:type schema:PublicationVolume
    101 N6967055e226b4035bccbc2d097066fa7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Leukocytes
    103 rdf:type schema:DefinedTerm
    104 N765bf35206bb48ea9907e00880af6f5f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Sequence Analysis, DNA
    106 rdf:type schema:DefinedTerm
    107 N7f0a5e8831ac41bf8c9479e637a83a65 rdf:first sg:person.01361055014.46
    108 rdf:rest N267c22b1c78c4d6398995925284a4714
    109 N812741b1b0ab4502977d5fbb8798848e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Tumor Cells, Cultured
    111 rdf:type schema:DefinedTerm
    112 N862993f0bdec45309cea5873575bee58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Gene Dosage
    114 rdf:type schema:DefinedTerm
    115 N8910caac23304e71bd7211c48cbe4a43 schema:name readcube_id
    116 schema:value 469d3bdddf88b9cc6a67d9932055db58ab40b3b1ce264918cd06ba1a17e3ba53
    117 rdf:type schema:PropertyValue
    118 N9053705e60a640ee965a483154674cda rdf:first sg:person.01350734042.58
    119 rdf:rest N40f0bb93d3724269a5b91161741efef5
    120 N9296e17f485541f597a9947a6d0d4a72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Humans
    122 rdf:type schema:DefinedTerm
    123 N943c74aa984244748d345383fa80f27f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Genome
    125 rdf:type schema:DefinedTerm
    126 Nabeafa4379614c34a3f639eaa3584c95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Genes, erbB-2
    128 rdf:type schema:DefinedTerm
    129 Nb0aebef3659b4c1882e63de655152afd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Female
    131 rdf:type schema:DefinedTerm
    132 Nb88c0cf8f00545e2985a20943aabc78c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Genome, Human
    134 rdf:type schema:DefinedTerm
    135 Nbc1cd68c15474602ab79b81757553f1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Physical Chromosome Mapping
    137 rdf:type schema:DefinedTerm
    138 Nc059f683f2b64658879bace1e4e48b3f schema:name pubmed_id
    139 schema:value 10471496
    140 rdf:type schema:PropertyValue
    141 Ncf4a64458b36422e94c4f14cda6c5374 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name X Chromosome
    143 rdf:type schema:DefinedTerm
    144 Nd38c721f27574427b92990fd9a015c3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Nucleic Acid Hybridization
    146 rdf:type schema:DefinedTerm
    147 Nd6ada6005bed4584b930ccdaafac9fe6 schema:name nlm_unique_id
    148 schema:value 9216904
    149 rdf:type schema:PropertyValue
    150 Ndf1477fe2b324229904b476f9593f7d8 rdf:first sg:person.0606110074.18
    151 rdf:rest N7f0a5e8831ac41bf8c9479e637a83a65
    152 Ndffe660138f54eea9c70302f17b3cd22 schema:name doi
    153 schema:value 10.1038/12640
    154 rdf:type schema:PropertyValue
    155 Ne07f4af1bfa649fda33eb3c535d471f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Male
    157 rdf:type schema:DefinedTerm
    158 Nf1efacecb6084d168659385a9993c524 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Chromosomes, Human, Pair 17
    160 rdf:type schema:DefinedTerm
    161 Nf26f768b6ff94942baba1ae00f833fdb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Microscopy
    163 rdf:type schema:DefinedTerm
    164 Nfd87d59205a34f16831d74b727019350 schema:name Springer Nature - SN SciGraph project
    165 rdf:type schema:Organization
    166 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Biological Sciences
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Genetics
    171 rdf:type schema:DefinedTerm
    172 sg:journal.1103138 schema:issn 1061-4036
    173 1546-1718
    174 schema:name Nature Genetics
    175 rdf:type schema:Periodical
    176 sg:person.01021225500.13 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    177 schema:familyName Botstein
    178 schema:givenName David
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021225500.13
    180 rdf:type schema:Person
    181 sg:person.012502544064.15 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    182 schema:familyName Eisen
    183 schema:givenName Michael B.
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012502544064.15
    185 rdf:type schema:Person
    186 sg:person.01350734042.58 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    187 schema:familyName Alizadeh
    188 schema:givenName Ash A.
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350734042.58
    190 rdf:type schema:Person
    191 sg:person.01361055014.46 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    192 schema:familyName Williams
    193 schema:givenName Cheryl F.
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361055014.46
    195 rdf:type schema:Person
    196 sg:person.013757432632.21 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    197 schema:familyName Pollack
    198 schema:givenName Jonathan R.
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013757432632.21
    200 rdf:type schema:Person
    201 sg:person.014304415612.51 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    202 schema:familyName Brown
    203 schema:givenName Patrick O.
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014304415612.51
    205 rdf:type schema:Person
    206 sg:person.0606110074.18 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    207 schema:familyName Pergamenschikov
    208 schema:givenName Alexander
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606110074.18
    210 rdf:type schema:Person
    211 sg:person.0614405557.39 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    212 schema:familyName Perou
    213 schema:givenName Charles M.
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614405557.39
    215 rdf:type schema:Person
    216 sg:person.0623224043.52 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    217 schema:familyName Jeffrey
    218 schema:givenName Stefanie S.
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623224043.52
    220 rdf:type schema:Person
    221 sg:pub.10.1007/s001090050155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010228321
    222 https://doi.org/10.1007/s001090050155
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/2524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026409761
    225 https://doi.org/10.1038/2524
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/ng0895-369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027303331
    228 https://doi.org/10.1038/ng0895-369
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/ng1196-292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012147825
    231 https://doi.org/10.1038/ng1196-292
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/ng1296-457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010987019
    234 https://doi.org/10.1038/ng1296-457
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/sj.onc.1201065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041282040
    237 https://doi.org/10.1038/sj.onc.1201065
    238 rdf:type schema:CreativeWork
    239 https://app.dimensions.ai/details/publication/pub.1082941410 schema:CreativeWork
    240 https://app.dimensions.ai/details/publication/pub.1083095555 schema:CreativeWork
    241 https://doi.org/10.1002/(sici)1098-2264(199712)20:4<372::aid-gcc8>3.0.co;2-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001118287
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1002/(sici)1098-2264(199712)20:4<399::aid-gcc12>3.0.co;2-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1040875285
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1002/(sici)1520-6408(1998)23:3<215::aid-dvg7>3.0.co;2-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020576936
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1002/gcc.2870100403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266174
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1002/j.1460-2075.1994.tb06386.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1082560430
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1006/geno.1995.1163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034931731
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1006/geno.1996.0177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037693325
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1006/geno.1996.0351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027783237
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1073/pnas.80.6.1707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037548980
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1073/pnas.89.12.5321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011077656
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1073/pnas.91.6.2156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022993456
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1073/pnas.95.8.4487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050813051
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1093/hmg/5.3.339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009108975
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1101/gr.6.7.639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028833356
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1126/science.1359641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062477301
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1126/science.2554494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062543708
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1126/science.270.5235.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551475
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1126/science.274.5287.540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062554572
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1126/science.277.5328.965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062557688
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1126/science.278.5338.680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558446
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1126/science.282.5389.744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062562946
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1126/science.283.5398.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563707
    284 rdf:type schema:CreativeWork
    285 https://www.grid.ac/institutes/grid.240952.8 schema:alternateName Stanford Medicine
    286 schema:name Department of Biochemistry, Stanford Medical Center, Stanford, California 94305, USA.
    287 Department of Genetics, Stanford Medical Center, Stanford, California 94305, USA.
    288 Department of Surgery, Stanford Medical Center, Stanford, California 94305, USA.
    289 Howard Hughes Medical Institute, Stanford Medical Center, Stanford, California 94305, USA.
    290 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...