Genome-wide analysis of DNA copy-number changes using cDNA microarrays View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-09

AUTHORS

Jonathan R. Pollack, Charles M. Perou, Ash A. Alizadeh, Michael B. Eisen, Alexander Pergamenschikov, Cheryl F. Williams, Stefanie S. Jeffrey, David Botstein, Patrick O. Brown

ABSTRACT

Gene amplifications and deletions frequently contribute to tumorigenesis. Characterization of these DNA copy-number changes is important for both the basic understanding of cancer and its diagnosis. Comparative genomic hybridization (CGH) was developed to survey DNA copy-number variations across a whole genome. With CGH, differentially labelled test and reference genomic DNAs are co-hybridized to normal metaphase chromosomes, and fluorescence ratios along the length of chromosomes provide a cytogenetic representation of DNA copy-number variation. CGH, however, has a limited ( approximately 20 Mb) mapping resolution, and higher-resolution techniques, such as fluorescence in situ hybridization (FISH), are prohibitively labour-intensive on a genomic scale. Array-based CGH, in which fluorescence ratios at arrayed DNA elements provide a locus-by-locus measure of DNA copy-number variation, represents another means of achieving increased mapping resolution. Published array CGH methods have relied on large genomic clone (for example BAC) array targets and have covered only a small fraction of the human genome. cDNAs representing over 30,000 radiation-hybrid (RH)-mapped human genes provide an alternative and readily available genomic resource for mapping DNA copy-number changes. Although cDNA microarrays have been used extensively to characterize variation in human gene expression, human genomic DNA is a far more complex mixture than the mRNA representation of human cells. Therefore, analysis of DNA copy-number variation using cDNA microarrays would require a sensitivity of detection an order of magnitude greater than has been routinely reported. We describe here a cDNA microarray-based CGH method, and its application to DNA copy-number variation analysis in breast cancer cell lines and tumours. Using this assay, we were able to identify gene amplifications and deletions genome-wide and with high resolution, and compare alterations in DNA copy number and gene expression. More... »

PAGES

ng0999_41

Journal

TITLE

Nature Genetics

ISSUE

1

VOLUME

23

Author Affiliations

Related Patents

  • Capillary Array And Related Methods
  • Gene Discovery Using Microarrays
  • Comparative Genomic Hybridization Assays Using Immobilized Oligonucleotide Features And Compositions For Practicing The Same
  • Methods And Apparatus For Measuring Analytes
  • Patient Stratification And Determining Clinical Outcome For Cancer Patients
  • Integrated Sensor Arrays For Biological And Chemical Analysis
  • Chemical Sensor Array With Leakage Compensation Circuit
  • Chemically Sensitive Sensor With Lightly Doped Drains
  • Gene Copy Number Profiling
  • Titanium Nitride As Sensing Layer For Microwell Structure
  • Methods And Apparatus For Measuring Analytes Using Large Scale Fet Arrays
  • Integrated Sensor Arrays For Biological And Chemical Analysis
  • Methods And Compositions For Whole Genome Amplification And Genotyping
  • Reagents And Methods For Use In Cancer Diagnosis, Classification And Therapy
  • Imaging Microarrays
  • Coupled Heterogeneous Devices For Ph Sensing
  • Chemically Sensitive Sensors With Sample And Hold Capacitors
  • Self-Aligned Well Structures For Low-Noise Chemical Sensors
  • Array Configuration And Readout Scheme
  • High Density Sensor Array Without Wells
  • Method And System For Delta Double Sampling
  • Methods And Apparatus For Detecting Molecular Interactions Using Fet Arrays
  • Methods And Compositions For Whole Genome Amplification And Genotyping
  • Chemical Detection Device Having Multiple Flow Channels
  • Active Chemically-Sensitive Sensors
  • System For Reducing Noise In A Chemical Sensor Array
  • Visualizing Expression Data On Chromosomal Graphic Schemes
  • Methods And Systems For Point Of Use Removal Of Sacrificial Material
  • Methods And Apparatus For Measuring Analytes
  • Systems, Tools And Methods For Focus And Context Viewing Of Large Collections Of Graphs
  • Chemically-Sensitive Field Effect Transistor Based Pixel Array With Protection Diodes
  • Compositions, Kits, And Methods For Identification, Assessment, Prevention And Treatment Of Pancreatic Adenocarcinoma In Humans
  • System For Reducing Noise In A Chemical Sensor Array
  • Methods And Apparatus For Measuring Analytes
  • Chemical Sensor With Protruded Sensor Surface
  • Chemical Sensor With Sidewall Spacer Sensor Surface
  • System For Reducing Noise In A Chemical Sensor Array
  • Methods For Calibrating An Array Of Chemically-Sensitive Sensors
  • Apparatus For Measuring Analytes Including Chemical Sensor Array
  • Ion-Sensing Charge-Accumulation Circuits And Methods
  • Methods For Nucleic Acid Mapping And Identification Of Fine-Structural-Variations In Nucleic Acids And Utilities
  • Ccd-Based Multi-Transistor Active Pixel Sensor Array
  • Active Chemically-Sensitive Sensors With In-Sensor Current Sources
  • Methods And System For Simultaneous Visualization And Manipulation Of Multiple Data Types
  • Reagents And Methods For Use In Cancer Diagnosis, Classification And Therapy
  • Capillary Array And Related Methods
  • Method And Apparatus For Identifying Defects In A Chemical Sensor Array
  • Chemfet Sensor Including Floating Gate
  • Methods And Apparatus For Measuring Analytes Using Large Scale Fet Arrays
  • High Data Rate Integrated Circuit With Power Management
  • Ion-Sensing Charge-Accumulation Circuits And Methods
  • System For Reducing Noise In A Chemical Sensor Array
  • Chemical Sensor Array Having Multiple Sensors Per Well
  • Chemical Sensor With Sidewall Sensor Surface
  • Methods And Apparatus For High Speed Operation Of A Chemically-Sensitive Sensor Array
  • Method Of Identifying Virtual Representations Of Nucleotide Sequences
  • Chemical Sensor With Conductive Cup-Shaped Sensor Surface
  • Chemical Sensor With Consistent Sensor Surface Areas
  • Compositions, Kits And Methods For Identification, Assessment, Prevention And Therapy Of Cancer
  • Reagents And Methods For Use In Cancer Diagnosis, Classification And Therapy
  • Reagents And Methods For Use In Cancer Diagnosis, Classification And Therapy
  • Active Chemically-Sensitive Sensors With Correlated Double Sampling
  • Active Chemically-Sensitive Sensors With In-Sensor Current Sources
  • Capacitive Charge Pump
  • Column Adc
  • Identification Of An Amplified Gene And Target For Drug Intervention
  • Methods And Apparatus For Measuring Analytes
  • Method For Analysing Nucleic Acids
  • Method Of Classifying A Breast Cancer Instrinsic Subtype
  • Comparative Genomic Hybridization Assays Using Immobilized Oligonucleotide Targets With Initially Small Sample Sizes And Compositions For Practicing The Same
  • Methods And Systems For Point Of Use Removal Of Sacrificial Material
  • Capillary Array And Related Methods
  • Methods For Manufacturing Well Structures For Low-Noise Chemical Sensors
  • Chemical Device With Thin Conductive Element
  • Methods And Apparatus For Measuring Analytes Using Large Scale Fet Arrays
  • Method Of Characterizing Quality Of Hybridized Cgh Arrays
  • Methods For Nucleic Acid Mapping And Identification Of Fine-Structural-Variations In Nucleic Acids
  • Annexin A9 (Anxa9) Biomarker And Therapeutic Target In Epithelial Cancer
  • Capillary Array And Related Methods
  • Active Chemically-Sensitive Sensors With Source Follower Amplifier
  • Two-Transistor Pixel Array
  • Comparative Genomic Hybridization Assays Using Immobilized Oligonucleotide Features And Compositions For Practicing The Same
  • Chemically-Sensitive Sample And Hold Sensors
  • Methods For Operating Chemically Sensitive Sensors With Sample And Hold Capacitors
  • Methods And Apparatus For Measuring Analytes Using Large Scale Fet Arrays
  • Detection Of Chromosomal Disorders
  • Capillary Array And Related Methods
  • Methods And Apparatus For Measuring Analytes
  • Chemical Sensor With Protruded Sensor Surface
  • Chemical Sensor With Sidewall Spacer Sensor Surface
  • Active Chemically-Sensitive Sensors With Reset Switch
  • Method And System For Delta Double Sampling
  • Chemical Sensors With Consistent Sensor Surface Areas
  • Methods And Apparatus For Measuring Analytes Using Large Scale Fet Arrays
  • Reliable Fluorescence Correction Method For Two-Color Measurement Fluorescence System
  • Method And System For Delta Double Sampling
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/12640

    DOI

    http://dx.doi.org/10.1038/12640

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014821425

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10471496


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosomes, Human, Pair 17", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Complementary", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Dosage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Library", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, erbB-2", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Leukocytes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Hybridization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Physical Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tumor Cells, Cultured", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "X Chromosome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Howard Hughes Medical Institute, Stanford Medical Center, Stanford, California 94305, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pollack", 
            "givenName": "Jonathan R.", 
            "id": "sg:person.013757432632.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013757432632.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Genetics, Stanford Medical Center, Stanford, California 94305, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Perou", 
            "givenName": "Charles M.", 
            "id": "sg:person.0614405557.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614405557.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Biochemistry, Stanford Medical Center, Stanford, California 94305, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alizadeh", 
            "givenName": "Ash A.", 
            "id": "sg:person.01350734042.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350734042.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Genetics, Stanford Medical Center, Stanford, California 94305, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eisen", 
            "givenName": "Michael B.", 
            "id": "sg:person.012502544064.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012502544064.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Genetics, Stanford Medical Center, Stanford, California 94305, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pergamenschikov", 
            "givenName": "Alexander", 
            "id": "sg:person.0606110074.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606110074.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Genetics, Stanford Medical Center, Stanford, California 94305, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Williams", 
            "givenName": "Cheryl F.", 
            "id": "sg:person.01361055014.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361055014.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Surgery, Stanford Medical Center, Stanford, California 94305, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jeffrey", 
            "givenName": "Stefanie S.", 
            "id": "sg:person.0623224043.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623224043.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Genetics, Stanford Medical Center, Stanford, California 94305, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Botstein", 
            "givenName": "David", 
            "id": "sg:person.01021225500.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021225500.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford Medicine", 
              "id": "https://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Howard Hughes Medical Institute, Stanford Medical Center, Stanford, California 94305, USA.", 
                "Department of Biochemistry, Stanford Medical Center, Stanford, California 94305, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brown", 
            "givenName": "Patrick O.", 
            "id": "sg:person.014304415612.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014304415612.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/(sici)1098-2264(199712)20:4<372::aid-gcc8>3.0.co;2-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001118287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/5.3.339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009108975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001090050155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010228321", 
              "https://doi.org/10.1007/s001090050155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1296-457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010987019", 
              "https://doi.org/10.1038/ng1296-457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.89.12.5321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011077656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1196-292", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012147825", 
              "https://doi.org/10.1038/ng1196-292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1520-6408(1998)23:3<215::aid-dvg7>3.0.co;2-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020576936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.91.6.2156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022993456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/2524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026409761", 
              "https://doi.org/10.1038/2524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/2524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026409761", 
              "https://doi.org/10.1038/2524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0895-369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027303331", 
              "https://doi.org/10.1038/ng0895-369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/geno.1996.0351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027783237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.6.7.639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028833356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/geno.1995.1163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034931731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.80.6.1707", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037548980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/geno.1996.0177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037693325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gcc.2870100403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038266174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1098-2264(199712)20:4<399::aid-gcc12>3.0.co;2-i", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040875285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1201065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041282040", 
              "https://doi.org/10.1038/sj.onc.1201065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1201065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041282040", 
              "https://doi.org/10.1038/sj.onc.1201065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.95.8.4487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050813051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1359641", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062477301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2554494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062543708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.270.5235.467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062551475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.274.5287.540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062554572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.277.5328.965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062557688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.278.5338.680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062558446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.282.5389.744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062562946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.283.5398.83", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062563707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1460-2075.1994.tb06386.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082560430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082941410", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083095555", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-09", 
        "datePublishedReg": "1999-09-01", 
        "description": "Gene amplifications and deletions frequently contribute to tumorigenesis. Characterization of these DNA copy-number changes is important for both the basic understanding of cancer and its diagnosis. Comparative genomic hybridization (CGH) was developed to survey DNA copy-number variations across a whole genome. With CGH, differentially labelled test and reference genomic DNAs are co-hybridized to normal metaphase chromosomes, and fluorescence ratios along the length of chromosomes provide a cytogenetic representation of DNA copy-number variation. CGH, however, has a limited ( approximately 20 Mb) mapping resolution, and higher-resolution techniques, such as fluorescence in situ hybridization (FISH), are prohibitively labour-intensive on a genomic scale. Array-based CGH, in which fluorescence ratios at arrayed DNA elements provide a locus-by-locus measure of DNA copy-number variation, represents another means of achieving increased mapping resolution. Published array CGH methods have relied on large genomic clone (for example BAC) array targets and have covered only a small fraction of the human genome. cDNAs representing over 30,000 radiation-hybrid (RH)-mapped human genes provide an alternative and readily available genomic resource for mapping DNA copy-number changes. Although cDNA microarrays have been used extensively to characterize variation in human gene expression, human genomic DNA is a far more complex mixture than the mRNA representation of human cells. Therefore, analysis of DNA copy-number variation using cDNA microarrays would require a sensitivity of detection an order of magnitude greater than has been routinely reported. We describe here a cDNA microarray-based CGH method, and its application to DNA copy-number variation analysis in breast cancer cell lines and tumours. Using this assay, we were able to identify gene amplifications and deletions genome-wide and with high resolution, and compare alterations in DNA copy number and gene expression.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/12640", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1103138", 
            "issn": [
              "1061-4036", 
              "1546-1718"
            ], 
            "name": "Nature Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "name": "Genome-wide analysis of DNA copy-number changes using cDNA microarrays", 
        "pagination": "ng0999_41", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "469d3bdddf88b9cc6a67d9932055db58ab40b3b1ce264918cd06ba1a17e3ba53"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10471496"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9216904"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/12640"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014821425"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/12640", 
          "https://app.dimensions.ai/details/publication/pub.1014821425"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/ng0999_41"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/12640'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/12640'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/12640'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/12640'


     

    This table displays all metadata directly associated to this object as RDF triples.

    290 TRIPLES      21 PREDICATES      76 URIs      38 LITERALS      26 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/12640 schema:about N10d7fc82b16c4376bb94ea8a2f4790b2
    2 N114a64e22d9a4b34ba8a8271ff0d0b4f
    3 N1fa60b56e5114695ae92a967785e2d82
    4 N3c88edcfa03249f0b3874c1f3ccf6e1b
    5 N41b93d0ae83f4b59b38dc412e7640ae3
    6 N701f08b55d684ac297276ca35123bf3d
    7 N769257c791eb4ce9ae6f501d37249912
    8 N9b171b564672451392b6a8f446300bed
    9 Na19e9b6c5f9640ccbb72cf73e435958d
    10 Nb1d01d88a762468ea821137570777290
    11 Nc007d72dee5a4a8ba50317ce34ef496e
    12 Nc4532d625dba46259a91f02387b0e359
    13 Nce92cf2225974499bbe0c43f9db494bd
    14 Nd8ae952454e5453981a2fdaadd9aee6d
    15 Ndab5acacebe14f7baa8736732663f2c5
    16 Ne9897c55521f4255887ccc66e9d8e495
    17 Nf560816fc7de4c8c81c4656e562e5160
    18 anzsrc-for:06
    19 anzsrc-for:0604
    20 schema:author Ncb47f15565c2472aa83366292fdb624a
    21 schema:citation sg:pub.10.1007/s001090050155
    22 sg:pub.10.1038/2524
    23 sg:pub.10.1038/ng0895-369
    24 sg:pub.10.1038/ng1196-292
    25 sg:pub.10.1038/ng1296-457
    26 sg:pub.10.1038/sj.onc.1201065
    27 https://app.dimensions.ai/details/publication/pub.1082941410
    28 https://app.dimensions.ai/details/publication/pub.1083095555
    29 https://doi.org/10.1002/(sici)1098-2264(199712)20:4<372::aid-gcc8>3.0.co;2-z
    30 https://doi.org/10.1002/(sici)1098-2264(199712)20:4<399::aid-gcc12>3.0.co;2-i
    31 https://doi.org/10.1002/(sici)1520-6408(1998)23:3<215::aid-dvg7>3.0.co;2-x
    32 https://doi.org/10.1002/gcc.2870100403
    33 https://doi.org/10.1002/j.1460-2075.1994.tb06386.x
    34 https://doi.org/10.1006/geno.1995.1163
    35 https://doi.org/10.1006/geno.1996.0177
    36 https://doi.org/10.1006/geno.1996.0351
    37 https://doi.org/10.1073/pnas.80.6.1707
    38 https://doi.org/10.1073/pnas.89.12.5321
    39 https://doi.org/10.1073/pnas.91.6.2156
    40 https://doi.org/10.1073/pnas.95.8.4487
    41 https://doi.org/10.1093/hmg/5.3.339
    42 https://doi.org/10.1101/gr.6.7.639
    43 https://doi.org/10.1126/science.1359641
    44 https://doi.org/10.1126/science.2554494
    45 https://doi.org/10.1126/science.270.5235.467
    46 https://doi.org/10.1126/science.274.5287.540
    47 https://doi.org/10.1126/science.277.5328.965
    48 https://doi.org/10.1126/science.278.5338.680
    49 https://doi.org/10.1126/science.282.5389.744
    50 https://doi.org/10.1126/science.283.5398.83
    51 schema:datePublished 1999-09
    52 schema:datePublishedReg 1999-09-01
    53 schema:description Gene amplifications and deletions frequently contribute to tumorigenesis. Characterization of these DNA copy-number changes is important for both the basic understanding of cancer and its diagnosis. Comparative genomic hybridization (CGH) was developed to survey DNA copy-number variations across a whole genome. With CGH, differentially labelled test and reference genomic DNAs are co-hybridized to normal metaphase chromosomes, and fluorescence ratios along the length of chromosomes provide a cytogenetic representation of DNA copy-number variation. CGH, however, has a limited ( approximately 20 Mb) mapping resolution, and higher-resolution techniques, such as fluorescence in situ hybridization (FISH), are prohibitively labour-intensive on a genomic scale. Array-based CGH, in which fluorescence ratios at arrayed DNA elements provide a locus-by-locus measure of DNA copy-number variation, represents another means of achieving increased mapping resolution. Published array CGH methods have relied on large genomic clone (for example BAC) array targets and have covered only a small fraction of the human genome. cDNAs representing over 30,000 radiation-hybrid (RH)-mapped human genes provide an alternative and readily available genomic resource for mapping DNA copy-number changes. Although cDNA microarrays have been used extensively to characterize variation in human gene expression, human genomic DNA is a far more complex mixture than the mRNA representation of human cells. Therefore, analysis of DNA copy-number variation using cDNA microarrays would require a sensitivity of detection an order of magnitude greater than has been routinely reported. We describe here a cDNA microarray-based CGH method, and its application to DNA copy-number variation analysis in breast cancer cell lines and tumours. Using this assay, we were able to identify gene amplifications and deletions genome-wide and with high resolution, and compare alterations in DNA copy number and gene expression.
    54 schema:genre research_article
    55 schema:inLanguage en
    56 schema:isAccessibleForFree false
    57 schema:isPartOf N3047746cbb424b8b932687364b3efc16
    58 N3142c266fce349858e1bc36c00e5b140
    59 sg:journal.1103138
    60 schema:name Genome-wide analysis of DNA copy-number changes using cDNA microarrays
    61 schema:pagination ng0999_41
    62 schema:productId N2b206b055717478588cdc97295d1f774
    63 N3e0c7e31fd26483bba837d970104b2d7
    64 N86fe1e3225fd45888854c5afff1b7229
    65 Nc00ee513e47d42398adb061998e3635e
    66 Nd629677f05a4457b9d546210ba2818d1
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014821425
    68 https://doi.org/10.1038/12640
    69 schema:sdDatePublished 2019-04-11T12:27
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher Nb50a8fd7b2a04053a988b531b918e6b2
    72 schema:url http://www.nature.com/articles/ng0999_41
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N10d7fc82b16c4376bb94ea8a2f4790b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    77 schema:name X Chromosome
    78 rdf:type schema:DefinedTerm
    79 N114a64e22d9a4b34ba8a8271ff0d0b4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name Leukocytes
    81 rdf:type schema:DefinedTerm
    82 N1fa60b56e5114695ae92a967785e2d82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Tumor Cells, Cultured
    84 rdf:type schema:DefinedTerm
    85 N2b206b055717478588cdc97295d1f774 schema:name doi
    86 schema:value 10.1038/12640
    87 rdf:type schema:PropertyValue
    88 N3047746cbb424b8b932687364b3efc16 schema:issueNumber 1
    89 rdf:type schema:PublicationIssue
    90 N3142c266fce349858e1bc36c00e5b140 schema:volumeNumber 23
    91 rdf:type schema:PublicationVolume
    92 N3c88edcfa03249f0b3874c1f3ccf6e1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name DNA, Complementary
    94 rdf:type schema:DefinedTerm
    95 N3e0c7e31fd26483bba837d970104b2d7 schema:name dimensions_id
    96 schema:value pub.1014821425
    97 rdf:type schema:PropertyValue
    98 N41b93d0ae83f4b59b38dc412e7640ae3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Genes, erbB-2
    100 rdf:type schema:DefinedTerm
    101 N554d1852e5804d8db235d2739b0320ba rdf:first sg:person.01361055014.46
    102 rdf:rest Nc590cd440c634203abf3c9a36d945343
    103 N56f2c2ac74d94b19a500d4a076d7c576 rdf:first sg:person.01021225500.13
    104 rdf:rest Nf9a7285ca56246c18c2ce8f8b6bf0d0a
    105 N5b678440aa7c499497f9cde44c315b03 rdf:first sg:person.012502544064.15
    106 rdf:rest Nadc7b020a8b84d8ab7fb4c1e00308c35
    107 N701f08b55d684ac297276ca35123bf3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Sequence Analysis, DNA
    109 rdf:type schema:DefinedTerm
    110 N769257c791eb4ce9ae6f501d37249912 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Microscopy
    112 rdf:type schema:DefinedTerm
    113 N86fe1e3225fd45888854c5afff1b7229 schema:name pubmed_id
    114 schema:value 10471496
    115 rdf:type schema:PropertyValue
    116 N9b171b564672451392b6a8f446300bed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Gene Dosage
    118 rdf:type schema:DefinedTerm
    119 Na19e9b6c5f9640ccbb72cf73e435958d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Chromosomes, Human, Pair 17
    121 rdf:type schema:DefinedTerm
    122 Nadc7b020a8b84d8ab7fb4c1e00308c35 rdf:first sg:person.0606110074.18
    123 rdf:rest N554d1852e5804d8db235d2739b0320ba
    124 Nb1d01d88a762468ea821137570777290 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Female
    126 rdf:type schema:DefinedTerm
    127 Nb50a8fd7b2a04053a988b531b918e6b2 schema:name Springer Nature - SN SciGraph project
    128 rdf:type schema:Organization
    129 Nc007d72dee5a4a8ba50317ce34ef496e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Male
    131 rdf:type schema:DefinedTerm
    132 Nc00ee513e47d42398adb061998e3635e schema:name nlm_unique_id
    133 schema:value 9216904
    134 rdf:type schema:PropertyValue
    135 Nc4532d625dba46259a91f02387b0e359 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Physical Chromosome Mapping
    137 rdf:type schema:DefinedTerm
    138 Nc590cd440c634203abf3c9a36d945343 rdf:first sg:person.0623224043.52
    139 rdf:rest N56f2c2ac74d94b19a500d4a076d7c576
    140 Ncb47f15565c2472aa83366292fdb624a rdf:first sg:person.013757432632.21
    141 rdf:rest Ne8fa7f837ba04a1a9f18c9ce5ec30b3a
    142 Nce92cf2225974499bbe0c43f9db494bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Genome, Human
    144 rdf:type schema:DefinedTerm
    145 Nd629677f05a4457b9d546210ba2818d1 schema:name readcube_id
    146 schema:value 469d3bdddf88b9cc6a67d9932055db58ab40b3b1ce264918cd06ba1a17e3ba53
    147 rdf:type schema:PropertyValue
    148 Nd8ae952454e5453981a2fdaadd9aee6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Gene Library
    150 rdf:type schema:DefinedTerm
    151 Ndab5acacebe14f7baa8736732663f2c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Humans
    153 rdf:type schema:DefinedTerm
    154 Ndd05198a17224358b1ae9a668ed1547d rdf:first sg:person.01350734042.58
    155 rdf:rest N5b678440aa7c499497f9cde44c315b03
    156 Ne8fa7f837ba04a1a9f18c9ce5ec30b3a rdf:first sg:person.0614405557.39
    157 rdf:rest Ndd05198a17224358b1ae9a668ed1547d
    158 Ne9897c55521f4255887ccc66e9d8e495 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Nucleic Acid Hybridization
    160 rdf:type schema:DefinedTerm
    161 Nf560816fc7de4c8c81c4656e562e5160 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Genome
    163 rdf:type schema:DefinedTerm
    164 Nf9a7285ca56246c18c2ce8f8b6bf0d0a rdf:first sg:person.014304415612.51
    165 rdf:rest rdf:nil
    166 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Biological Sciences
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Genetics
    171 rdf:type schema:DefinedTerm
    172 sg:journal.1103138 schema:issn 1061-4036
    173 1546-1718
    174 schema:name Nature Genetics
    175 rdf:type schema:Periodical
    176 sg:person.01021225500.13 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    177 schema:familyName Botstein
    178 schema:givenName David
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021225500.13
    180 rdf:type schema:Person
    181 sg:person.012502544064.15 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    182 schema:familyName Eisen
    183 schema:givenName Michael B.
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012502544064.15
    185 rdf:type schema:Person
    186 sg:person.01350734042.58 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    187 schema:familyName Alizadeh
    188 schema:givenName Ash A.
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350734042.58
    190 rdf:type schema:Person
    191 sg:person.01361055014.46 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    192 schema:familyName Williams
    193 schema:givenName Cheryl F.
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361055014.46
    195 rdf:type schema:Person
    196 sg:person.013757432632.21 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    197 schema:familyName Pollack
    198 schema:givenName Jonathan R.
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013757432632.21
    200 rdf:type schema:Person
    201 sg:person.014304415612.51 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    202 schema:familyName Brown
    203 schema:givenName Patrick O.
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014304415612.51
    205 rdf:type schema:Person
    206 sg:person.0606110074.18 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    207 schema:familyName Pergamenschikov
    208 schema:givenName Alexander
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606110074.18
    210 rdf:type schema:Person
    211 sg:person.0614405557.39 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    212 schema:familyName Perou
    213 schema:givenName Charles M.
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614405557.39
    215 rdf:type schema:Person
    216 sg:person.0623224043.52 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
    217 schema:familyName Jeffrey
    218 schema:givenName Stefanie S.
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623224043.52
    220 rdf:type schema:Person
    221 sg:pub.10.1007/s001090050155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010228321
    222 https://doi.org/10.1007/s001090050155
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/2524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026409761
    225 https://doi.org/10.1038/2524
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/ng0895-369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027303331
    228 https://doi.org/10.1038/ng0895-369
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/ng1196-292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012147825
    231 https://doi.org/10.1038/ng1196-292
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/ng1296-457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010987019
    234 https://doi.org/10.1038/ng1296-457
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/sj.onc.1201065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041282040
    237 https://doi.org/10.1038/sj.onc.1201065
    238 rdf:type schema:CreativeWork
    239 https://app.dimensions.ai/details/publication/pub.1082941410 schema:CreativeWork
    240 https://app.dimensions.ai/details/publication/pub.1083095555 schema:CreativeWork
    241 https://doi.org/10.1002/(sici)1098-2264(199712)20:4<372::aid-gcc8>3.0.co;2-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001118287
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1002/(sici)1098-2264(199712)20:4<399::aid-gcc12>3.0.co;2-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1040875285
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1002/(sici)1520-6408(1998)23:3<215::aid-dvg7>3.0.co;2-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020576936
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1002/gcc.2870100403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266174
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1002/j.1460-2075.1994.tb06386.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1082560430
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1006/geno.1995.1163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034931731
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1006/geno.1996.0177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037693325
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1006/geno.1996.0351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027783237
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1073/pnas.80.6.1707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037548980
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1073/pnas.89.12.5321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011077656
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1073/pnas.91.6.2156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022993456
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1073/pnas.95.8.4487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050813051
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1093/hmg/5.3.339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009108975
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1101/gr.6.7.639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028833356
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1126/science.1359641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062477301
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1126/science.2554494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062543708
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1126/science.270.5235.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551475
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1126/science.274.5287.540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062554572
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1126/science.277.5328.965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062557688
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1126/science.278.5338.680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558446
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1126/science.282.5389.744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062562946
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1126/science.283.5398.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563707
    284 rdf:type schema:CreativeWork
    285 https://www.grid.ac/institutes/grid.240952.8 schema:alternateName Stanford Medicine
    286 schema:name Department of Biochemistry, Stanford Medical Center, Stanford, California 94305, USA.
    287 Department of Genetics, Stanford Medical Center, Stanford, California 94305, USA.
    288 Department of Surgery, Stanford Medical Center, Stanford, California 94305, USA.
    289 Howard Hughes Medical Institute, Stanford Medical Center, Stanford, California 94305, USA.
    290 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...