Tracing knowledge diffusion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-02

AUTHORS

Chaomei Chen, Diana Hicks

ABSTRACT

Knowledge diffusion is the adaptation of knowledge in a broad range of scientific and engineering research and development. Tracing knowledge diffusion between science and technology is a challenging issue due to the complexity of identifying emerging patterns in a diverse range of possible processes. In this article, we describe an approach that combines complex network theory, network visualization, and patent citation analysis in order to improve the means for the study of knowledge diffusion. In particular, we analyze patent citations in the field of tissue engineering. We emphasize that this is the beginning of a longer-term endeavor that aims to develop and deploy effective, progressive, and explanatory visualization techniques for us to capture the dynamics of the evolution of patent citation networks. The work has practical implications on resource allocation, strategic planning, and science policy. More... »

PAGES

199-211

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/b:scie.0000018528.59913.48

DOI

http://dx.doi.org/10.1023/b:scie.0000018528.59913.48

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036416248


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Drexel University", 
          "id": "https://www.grid.ac/institutes/grid.166341.7", 
          "name": [
            "College of Information Science and Technology, Drexel University, 19104-2875, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Chaomei", 
        "id": "sg:person.01105627764.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105627764.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "School of Public Policy, Georgia Institute of Technology, Atlanta, GA (, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hicks", 
        "givenName": "Diana", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1005694202977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002937006", 
          "https://doi.org/10.1023/a:1005694202977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-8186-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004665387", 
          "https://doi.org/10.1007/978-1-4615-8186-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-8186-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004665387", 
          "https://doi.org/10.1007/978-1-4615-8186-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-8186-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004665387", 
          "https://doi.org/10.1007/978-1-4615-8186-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.10229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010042732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0306-4573(98)00068-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011592885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-8733(89)90017-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012779197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(00)00018-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016331444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0048-7333(00)00147-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018848788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018730110112519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019965146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010572914033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020755672", 
          "https://doi.org/10.1023/a:1010572914033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-4571(199105)42:4<233::aid-asi1>3.0.co;2-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034292987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0048-7333(97)00013-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039257071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(02)00736-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043663258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/030631277700700202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044351145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/030631277700700202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044351145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.10066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047022191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(98)00513-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048695957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.10075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050464814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0048-7333(92)90018-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052293332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2.910895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061106359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5326.983935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061186806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.149.3683.510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062485810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/016555159902500107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063752219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/016555159902500107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063752219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0193841x9401800110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063769082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0193841x9401800110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063769082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/030631277400400102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063809934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/030631277400400102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063809934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00345334.1980.11756595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092919725"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-02", 
    "datePublishedReg": "2004-02-01", 
    "description": "Knowledge diffusion is the adaptation of knowledge in a broad range of scientific and engineering research and development. Tracing knowledge diffusion between science and technology is a challenging issue due to the complexity of identifying emerging patterns in a diverse range of possible processes. In this article, we describe an approach that combines complex network theory, network visualization, and patent citation analysis in order to improve the means for the study of knowledge diffusion. In particular, we analyze patent citations in the field of tissue engineering. We emphasize that this is the beginning of a longer-term endeavor that aims to develop and deploy effective, progressive, and explanatory visualization techniques for us to capture the dynamics of the evolution of patent citation networks. The work has practical implications on resource allocation, strategic planning, and science policy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/b:scie.0000018528.59913.48", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1089056", 
        "issn": [
          "0138-9130", 
          "1588-2861"
        ], 
        "name": "Scientometrics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "59"
      }
    ], 
    "name": "Tracing knowledge diffusion", 
    "pagination": "199-211", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ad794f9bcbf8c60cde5fd796fe67438a8809ded135ea204944246ca2f338fb98"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/b:scie.0000018528.59913.48"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036416248"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/b:scie.0000018528.59913.48", 
      "https://app.dimensions.ai/details/publication/pub.1036416248"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FB%3ASCIE.0000018528.59913.48"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:scie.0000018528.59913.48'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:scie.0000018528.59913.48'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:scie.0000018528.59913.48'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:scie.0000018528.59913.48'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/b:scie.0000018528.59913.48 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N90c9c7070dd943fbba4dfb66a2be83c7
4 schema:citation sg:pub.10.1007/978-1-4615-8186-4
5 sg:pub.10.1023/a:1005694202977
6 sg:pub.10.1023/a:1010572914033
7 sg:pub.10.1038/30918
8 https://doi.org/10.1002/(sici)1097-4571(199105)42:4<233::aid-asi1>3.0.co;2-i
9 https://doi.org/10.1002/asi.10066
10 https://doi.org/10.1002/asi.10075
11 https://doi.org/10.1002/asi.10229
12 https://doi.org/10.1016/0048-7333(92)90018-y
13 https://doi.org/10.1016/0378-8733(89)90017-8
14 https://doi.org/10.1016/s0048-7333(00)00147-5
15 https://doi.org/10.1016/s0048-7333(97)00013-9
16 https://doi.org/10.1016/s0306-4573(98)00068-5
17 https://doi.org/10.1016/s0378-4371(00)00018-2
18 https://doi.org/10.1016/s0378-4371(02)00736-7
19 https://doi.org/10.1016/s0550-3213(98)00513-6
20 https://doi.org/10.1080/00018730110112519
21 https://doi.org/10.1080/00345334.1980.11756595
22 https://doi.org/10.1103/revmodphys.74.47
23 https://doi.org/10.1109/2.910895
24 https://doi.org/10.1109/5326.983935
25 https://doi.org/10.1126/science.149.3683.510
26 https://doi.org/10.1177/016555159902500107
27 https://doi.org/10.1177/0193841x9401800110
28 https://doi.org/10.1177/030631277400400102
29 https://doi.org/10.1177/030631277700700202
30 schema:datePublished 2004-02
31 schema:datePublishedReg 2004-02-01
32 schema:description Knowledge diffusion is the adaptation of knowledge in a broad range of scientific and engineering research and development. Tracing knowledge diffusion between science and technology is a challenging issue due to the complexity of identifying emerging patterns in a diverse range of possible processes. In this article, we describe an approach that combines complex network theory, network visualization, and patent citation analysis in order to improve the means for the study of knowledge diffusion. In particular, we analyze patent citations in the field of tissue engineering. We emphasize that this is the beginning of a longer-term endeavor that aims to develop and deploy effective, progressive, and explanatory visualization techniques for us to capture the dynamics of the evolution of patent citation networks. The work has practical implications on resource allocation, strategic planning, and science policy.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N00d0f3f50b5b40d4ab3a14883ec5cc14
37 N87f7805f8cc247efbb3390314997c9fa
38 sg:journal.1089056
39 schema:name Tracing knowledge diffusion
40 schema:pagination 199-211
41 schema:productId N5b3f4424e4ce4ada8aee54556f7874c8
42 Na7546dfefca44465ac8dd8f8f89b8ecb
43 Nf4ebd817cda14ca09463e1bf67a5b68c
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036416248
45 https://doi.org/10.1023/b:scie.0000018528.59913.48
46 schema:sdDatePublished 2019-04-10T18:19
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N7b930d8d7d8146e097b8ae814ea211af
49 schema:url http://link.springer.com/10.1023%2FB%3ASCIE.0000018528.59913.48
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N00d0f3f50b5b40d4ab3a14883ec5cc14 schema:volumeNumber 59
54 rdf:type schema:PublicationVolume
55 N0aae5655367949889e1e7c53b195f10e rdf:first N7c213e177a5144daa0c4492b97a59022
56 rdf:rest rdf:nil
57 N5b3f4424e4ce4ada8aee54556f7874c8 schema:name readcube_id
58 schema:value ad794f9bcbf8c60cde5fd796fe67438a8809ded135ea204944246ca2f338fb98
59 rdf:type schema:PropertyValue
60 N7b930d8d7d8146e097b8ae814ea211af schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N7c213e177a5144daa0c4492b97a59022 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
63 schema:familyName Hicks
64 schema:givenName Diana
65 rdf:type schema:Person
66 N87f7805f8cc247efbb3390314997c9fa schema:issueNumber 2
67 rdf:type schema:PublicationIssue
68 N90c9c7070dd943fbba4dfb66a2be83c7 rdf:first sg:person.01105627764.76
69 rdf:rest N0aae5655367949889e1e7c53b195f10e
70 Na7546dfefca44465ac8dd8f8f89b8ecb schema:name dimensions_id
71 schema:value pub.1036416248
72 rdf:type schema:PropertyValue
73 Nf4ebd817cda14ca09463e1bf67a5b68c schema:name doi
74 schema:value 10.1023/b:scie.0000018528.59913.48
75 rdf:type schema:PropertyValue
76 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
77 schema:name Information and Computing Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
80 schema:name Artificial Intelligence and Image Processing
81 rdf:type schema:DefinedTerm
82 sg:journal.1089056 schema:issn 0138-9130
83 1588-2861
84 schema:name Scientometrics
85 rdf:type schema:Periodical
86 sg:person.01105627764.76 schema:affiliation https://www.grid.ac/institutes/grid.166341.7
87 schema:familyName Chen
88 schema:givenName Chaomei
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105627764.76
90 rdf:type schema:Person
91 sg:pub.10.1007/978-1-4615-8186-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004665387
92 https://doi.org/10.1007/978-1-4615-8186-4
93 rdf:type schema:CreativeWork
94 sg:pub.10.1023/a:1005694202977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002937006
95 https://doi.org/10.1023/a:1005694202977
96 rdf:type schema:CreativeWork
97 sg:pub.10.1023/a:1010572914033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020755672
98 https://doi.org/10.1023/a:1010572914033
99 rdf:type schema:CreativeWork
100 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
101 https://doi.org/10.1038/30918
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1002/(sici)1097-4571(199105)42:4<233::aid-asi1>3.0.co;2-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1034292987
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1002/asi.10066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047022191
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1002/asi.10075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050464814
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/asi.10229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010042732
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0048-7333(92)90018-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052293332
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0378-8733(89)90017-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012779197
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0048-7333(00)00147-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018848788
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0048-7333(97)00013-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039257071
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0306-4573(98)00068-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011592885
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0378-4371(00)00018-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016331444
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/s0378-4371(02)00736-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043663258
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0550-3213(98)00513-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048695957
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1080/00018730110112519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019965146
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1080/00345334.1980.11756595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092919725
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/revmodphys.74.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008594690
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/2.910895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061106359
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/5326.983935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061186806
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1126/science.149.3683.510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062485810
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1177/016555159902500107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063752219
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1177/0193841x9401800110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063769082
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1177/030631277400400102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063809934
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1177/030631277700700202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044351145
146 rdf:type schema:CreativeWork
147 https://www.grid.ac/institutes/grid.166341.7 schema:alternateName Drexel University
148 schema:name College of Information Science and Technology, Drexel University, 19104-2875, Philadelphia, PA, USA
149 rdf:type schema:Organization
150 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
151 schema:name School of Public Policy, Georgia Institute of Technology, Atlanta, GA (, USA
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...