Polymer Designs to Control Biofilm Growth on Medical Devices View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-06

AUTHORS

I. Francolini, G. Donelli, P. Stoodley

ABSTRACT

Indwelling and temporary medical delivery devices (i.e. catheters) are increasingly used in hospital settings, providing clinicians with useful tools to administer nutrients, draw blood samples and deliver drugs. However, they can often put patients at risk for local or systemic infections, including bloodstream infections and endocarditis. Microorganisms readily adhere to the surfaces and colonize them by forming a slimy layer of biofilm. Bacteria growing in biofilms exhibit an increased antibiotic resistance in comparison with planktonic cells. Consequently the antibiotic treatment of these medical device-associated infections frequently fails. Detechment resulting in the formation of microemboli is a further biofilm related complication. Since infections often involve increased morbidity and morality, prolonged hospitalization and additional medical costs, various strategies to prevent biofilm formation on implanted medical devices have been developed over the last two decades. In this paper we review and discuss the most significant experimental approaches to inhibit bacterial adhesion and growth on these devices. More... »

PAGES

307-319

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/b:resb.0000040469.26208.83

DOI

http://dx.doi.org/10.1023/b:resb.0000040469.26208.83

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007410345


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Rome \u201cLa Sapienza\u201d, Dept. Chemistry, Rome", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Centre for biofilm Engineering, 366 EPS Building, Montana State University, Bozeman, MT 59717, USA", 
            "University of Rome \u201cLa Sapienza\u201d, Dept. Chemistry, Rome"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Francolini", 
        "givenName": "I.", 
        "id": "sg:person.0736243020.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736243020.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Superiore di Sahita, Dept. Technologies and Health, Rome", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Instituto Superiore di Sahita, Dept. Technologies and Health, Rome"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Donelli", 
        "givenName": "G.", 
        "id": "sg:person.01351022332.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351022332.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Genomic Sciences, Allegheny-Singer Research Institute, 11th Floor South Tower, 320 East North Avenue, Pittsburgh PA 15212-4772, USA", 
          "id": "http://www.grid.ac/institutes/grid.280673.8", 
          "name": [
            "Centre for biofilm Engineering, 366 EPS Building, Montana State University, Bozeman, MT 59717, USA", 
            "Center for Genomic Sciences, Allegheny-Singer Research Institute, 11th Floor South Tower, 320 East North Avenue, Pittsburgh PA 15212-4772, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stoodley", 
        "givenName": "P.", 
        "id": "sg:person.01316722264.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316722264.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35101627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040700744", 
          "https://doi.org/10.1038/35101627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/79568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028102485", 
          "https://doi.org/10.1038/79568"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-06", 
    "datePublishedReg": "2003-06-01", 
    "description": "Indwelling and temporary medical delivery devices (i.e. catheters) are increasingly used in hospital settings, providing clinicians with useful tools to administer nutrients, draw blood samples and deliver drugs. However, they can often put patients at risk for local or systemic infections, including bloodstream infections and endocarditis. Microorganisms readily adhere to the surfaces and colonize them by forming a slimy layer of biofilm. Bacteria growing in biofilms exhibit an increased antibiotic resistance in comparison with planktonic cells. Consequently the antibiotic treatment of these medical device-associated infections frequently fails. Detechment resulting in the formation of microemboli is a further biofilm related complication. Since infections often involve increased morbidity and morality, prolonged hospitalization and additional medical costs, various strategies to prevent biofilm formation on implanted medical devices have been developed over the last two decades. In this paper we review and discuss the most significant experimental approaches to inhibit bacterial adhesion and growth on these devices.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/b:resb.0000040469.26208.83", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036852", 
        "issn": [
          "1569-1705", 
          "1572-9826"
        ], 
        "name": "Reviews in Environmental Science and Bio/Technology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "medical devices", 
      "medical device-associated infections", 
      "implanted medical devices", 
      "polymer design", 
      "significant experimental approaches", 
      "delivery devices", 
      "devices", 
      "biofilm growth", 
      "bacterial adhesion", 
      "slimy layer", 
      "device-associated infections", 
      "layer", 
      "experimental approach", 
      "surface", 
      "biofilms", 
      "adhesion", 
      "design", 
      "resistance", 
      "formation", 
      "cost", 
      "biofilm formation", 
      "growth", 
      "useful tool", 
      "comparison", 
      "approach", 
      "tool", 
      "formation of microemboli", 
      "additional medical costs", 
      "samples", 
      "microorganisms", 
      "strategies", 
      "nutrients", 
      "planktonic cells", 
      "decades", 
      "treatment", 
      "cells", 
      "bacteria", 
      "microemboli", 
      "setting", 
      "risk", 
      "drugs", 
      "complications", 
      "bloodstream infections", 
      "prolonged hospitalization", 
      "hospital setting", 
      "blood samples", 
      "antibiotic treatment", 
      "systemic infection", 
      "medical costs", 
      "infection", 
      "clinicians", 
      "antibiotic resistance", 
      "patients", 
      "endocarditis", 
      "morbidity", 
      "hospitalization", 
      "paper", 
      "morality", 
      "temporary medical delivery devices", 
      "medical delivery devices", 
      "further biofilm"
    ], 
    "name": "Polymer Designs to Control Biofilm Growth on Medical Devices", 
    "pagination": "307-319", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007410345"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/b:resb.0000040469.26208.83"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/b:resb.0000040469.26208.83", 
      "https://app.dimensions.ai/details/publication/pub.1007410345"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_366.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/b:resb.0000040469.26208.83"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:resb.0000040469.26208.83'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:resb.0000040469.26208.83'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:resb.0000040469.26208.83'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:resb.0000040469.26208.83'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      22 PREDICATES      91 URIs      79 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/b:resb.0000040469.26208.83 schema:about anzsrc-for:06
2 anzsrc-for:0605
3 anzsrc-for:09
4 anzsrc-for:0903
5 schema:author N72d0deb8a21c4b62ae7d06c6410a1d0d
6 schema:citation sg:pub.10.1038/35101627
7 sg:pub.10.1038/79568
8 schema:datePublished 2003-06
9 schema:datePublishedReg 2003-06-01
10 schema:description Indwelling and temporary medical delivery devices (i.e. catheters) are increasingly used in hospital settings, providing clinicians with useful tools to administer nutrients, draw blood samples and deliver drugs. However, they can often put patients at risk for local or systemic infections, including bloodstream infections and endocarditis. Microorganisms readily adhere to the surfaces and colonize them by forming a slimy layer of biofilm. Bacteria growing in biofilms exhibit an increased antibiotic resistance in comparison with planktonic cells. Consequently the antibiotic treatment of these medical device-associated infections frequently fails. Detechment resulting in the formation of microemboli is a further biofilm related complication. Since infections often involve increased morbidity and morality, prolonged hospitalization and additional medical costs, various strategies to prevent biofilm formation on implanted medical devices have been developed over the last two decades. In this paper we review and discuss the most significant experimental approaches to inhibit bacterial adhesion and growth on these devices.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N6a9933ec4b17425e9b973fa1dd416b1f
15 Nc861452efdd54395b1367212c2e9b03c
16 sg:journal.1036852
17 schema:keywords additional medical costs
18 adhesion
19 antibiotic resistance
20 antibiotic treatment
21 approach
22 bacteria
23 bacterial adhesion
24 biofilm formation
25 biofilm growth
26 biofilms
27 blood samples
28 bloodstream infections
29 cells
30 clinicians
31 comparison
32 complications
33 cost
34 decades
35 delivery devices
36 design
37 device-associated infections
38 devices
39 drugs
40 endocarditis
41 experimental approach
42 formation
43 formation of microemboli
44 further biofilm
45 growth
46 hospital setting
47 hospitalization
48 implanted medical devices
49 infection
50 layer
51 medical costs
52 medical delivery devices
53 medical device-associated infections
54 medical devices
55 microemboli
56 microorganisms
57 morality
58 morbidity
59 nutrients
60 paper
61 patients
62 planktonic cells
63 polymer design
64 prolonged hospitalization
65 resistance
66 risk
67 samples
68 setting
69 significant experimental approaches
70 slimy layer
71 strategies
72 surface
73 systemic infection
74 temporary medical delivery devices
75 tool
76 treatment
77 useful tool
78 schema:name Polymer Designs to Control Biofilm Growth on Medical Devices
79 schema:pagination 307-319
80 schema:productId N4703d0f13a984b5bad1efd2b657c94f8
81 Nc9aaa0285c604de4acb777e4ce783d4a
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007410345
83 https://doi.org/10.1023/b:resb.0000040469.26208.83
84 schema:sdDatePublished 2021-12-01T19:14
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N0cb919a177c548bfa571f9f41568d609
87 schema:url https://doi.org/10.1023/b:resb.0000040469.26208.83
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N0807bb943de042f193eedf3483034390 rdf:first sg:person.01351022332.48
92 rdf:rest Nb5e200e5e12c4399b50f96d31e1049f3
93 N0cb919a177c548bfa571f9f41568d609 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N4703d0f13a984b5bad1efd2b657c94f8 schema:name doi
96 schema:value 10.1023/b:resb.0000040469.26208.83
97 rdf:type schema:PropertyValue
98 N6a9933ec4b17425e9b973fa1dd416b1f schema:issueNumber 2-4
99 rdf:type schema:PublicationIssue
100 N72d0deb8a21c4b62ae7d06c6410a1d0d rdf:first sg:person.0736243020.33
101 rdf:rest N0807bb943de042f193eedf3483034390
102 Nb5e200e5e12c4399b50f96d31e1049f3 rdf:first sg:person.01316722264.07
103 rdf:rest rdf:nil
104 Nc861452efdd54395b1367212c2e9b03c schema:volumeNumber 2
105 rdf:type schema:PublicationVolume
106 Nc9aaa0285c604de4acb777e4ce783d4a schema:name dimensions_id
107 schema:value pub.1007410345
108 rdf:type schema:PropertyValue
109 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
110 schema:name Biological Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
113 schema:name Microbiology
114 rdf:type schema:DefinedTerm
115 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
116 schema:name Engineering
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
119 schema:name Biomedical Engineering
120 rdf:type schema:DefinedTerm
121 sg:journal.1036852 schema:issn 1569-1705
122 1572-9826
123 schema:name Reviews in Environmental Science and Bio/Technology
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.01316722264.07 schema:affiliation grid-institutes:grid.280673.8
127 schema:familyName Stoodley
128 schema:givenName P.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316722264.07
130 rdf:type schema:Person
131 sg:person.01351022332.48 schema:affiliation grid-institutes:None
132 schema:familyName Donelli
133 schema:givenName G.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351022332.48
135 rdf:type schema:Person
136 sg:person.0736243020.33 schema:affiliation grid-institutes:grid.7841.a
137 schema:familyName Francolini
138 schema:givenName I.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736243020.33
140 rdf:type schema:Person
141 sg:pub.10.1038/35101627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040700744
142 https://doi.org/10.1038/35101627
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/79568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028102485
145 https://doi.org/10.1038/79568
146 rdf:type schema:CreativeWork
147 grid-institutes:None schema:alternateName Instituto Superiore di Sahita, Dept. Technologies and Health, Rome
148 schema:name Instituto Superiore di Sahita, Dept. Technologies and Health, Rome
149 rdf:type schema:Organization
150 grid-institutes:grid.280673.8 schema:alternateName Center for Genomic Sciences, Allegheny-Singer Research Institute, 11th Floor South Tower, 320 East North Avenue, Pittsburgh PA 15212-4772, USA
151 schema:name Center for Genomic Sciences, Allegheny-Singer Research Institute, 11th Floor South Tower, 320 East North Avenue, Pittsburgh PA 15212-4772, USA
152 Centre for biofilm Engineering, 366 EPS Building, Montana State University, Bozeman, MT 59717, USA
153 rdf:type schema:Organization
154 grid-institutes:grid.7841.a schema:alternateName University of Rome “La Sapienza”, Dept. Chemistry, Rome
155 schema:name Centre for biofilm Engineering, 366 EPS Building, Montana State University, Bozeman, MT 59717, USA
156 University of Rome “La Sapienza”, Dept. Chemistry, Rome
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...