Asymptotics of Subexponential Max Plus Networks: the Stochastic Event Graph Case View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-01

AUTHORS

François Baccelli, Marc Lelarge, Serguei Foss

ABSTRACT

We calculate the exact tail asymptotics of stationary response times for open stochastic event graphs, in the irreducible and reducible cases. These networks admit a representation as (max, plus)-linear systems in a random medium. We study the case of renewal input and i.i.d. service times with subexponential distributions. We show that the stationary response times have tail asymptotics of the same order as the integrated tail of service times. The mutiplicative constants only involve the intensity of the arrival process and the (max, plus)-Lyapunov exponents of the sequence of (max, plus)-matrices. More... »

PAGES

75-96

References to SciGraph publications

Journal

TITLE

Queueing Systems

ISSUE

1-2

VOLUME

46

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/b:ques.0000021142.51241.76

DOI

http://dx.doi.org/10.1023/b:ques.0000021142.51241.76

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017179048


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "INRIA\u2013ENS, ENS, 45 rue d'Ulm, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baccelli", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.013374336621.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374336621.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INRIA\u2013ENS, ENS, 45 rue d'Ulm, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lelarge", 
        "givenName": "Marc", 
        "id": "sg:person.016213456237.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016213456237.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Heriot-Watt University", 
          "id": "https://www.grid.ac/institutes/grid.9531.e", 
          "name": [
            "Institute of Mathematics, 630090, Novosibirsk, Russia, and", 
            "Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Foss", 
        "givenName": "Serguei", 
        "id": "sg:person.010105104257.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010105104257.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0304-4149(77)90047-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000866427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0001867800009186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003630091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200102931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007096025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1019176129224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009270978", 
          "https://doi.org/10.1023/a:1019176129224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200048361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028106157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200040705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045500702"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-01", 
    "datePublishedReg": "2004-01-01", 
    "description": "We calculate the exact tail asymptotics of stationary response times for open stochastic event graphs, in the irreducible and reducible cases. These networks admit a representation as (max, plus)-linear systems in a random medium. We study the case of renewal input and i.i.d. service times with subexponential distributions. We show that the stationary response times have tail asymptotics of the same order as the integrated tail of service times. The mutiplicative constants only involve the intensity of the arrival process and the (max, plus)-Lyapunov exponents of the sequence of (max, plus)-matrices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/b:ques.0000021142.51241.76", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1048269", 
        "issn": [
          "0257-0130", 
          "1572-9443"
        ], 
        "name": "Queueing Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "Asymptotics of Subexponential Max Plus Networks: the Stochastic Event Graph Case", 
    "pagination": "75-96", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "51d900732f0c986a1316f382d60dd951689cbd8590a6e50220305c35c6fa0b98"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/b:ques.0000021142.51241.76"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017179048"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/b:ques.0000021142.51241.76", 
      "https://app.dimensions.ai/details/publication/pub.1017179048"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000536.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FB%3AQUES.0000021142.51241.76"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:ques.0000021142.51241.76'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:ques.0000021142.51241.76'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:ques.0000021142.51241.76'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:ques.0000021142.51241.76'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/b:ques.0000021142.51241.76 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N16ff617474004e02876da3f67ee9c72f
4 schema:citation sg:pub.10.1023/a:1019176129224
5 https://doi.org/10.1016/0304-4149(77)90047-3
6 https://doi.org/10.1017/s0001867800009186
7 https://doi.org/10.1017/s0021900200040705
8 https://doi.org/10.1017/s0021900200048361
9 https://doi.org/10.1017/s0021900200102931
10 schema:datePublished 2004-01
11 schema:datePublishedReg 2004-01-01
12 schema:description We calculate the exact tail asymptotics of stationary response times for open stochastic event graphs, in the irreducible and reducible cases. These networks admit a representation as (max, plus)-linear systems in a random medium. We study the case of renewal input and i.i.d. service times with subexponential distributions. We show that the stationary response times have tail asymptotics of the same order as the integrated tail of service times. The mutiplicative constants only involve the intensity of the arrival process and the (max, plus)-Lyapunov exponents of the sequence of (max, plus)-matrices.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N70b5284974be46569d7dd893f9778348
17 Ndee989ce03174289aca76fcab367a99f
18 sg:journal.1048269
19 schema:name Asymptotics of Subexponential Max Plus Networks: the Stochastic Event Graph Case
20 schema:pagination 75-96
21 schema:productId N068dad24214d44bb8c8e6b337ce9773c
22 N50cc70cda58e4e569fa5cd2e59ff0270
23 N8908303449f24957ab95be19573c4309
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017179048
25 https://doi.org/10.1023/b:ques.0000021142.51241.76
26 schema:sdDatePublished 2019-04-10T20:02
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Nb9f51f0008814e9dae6b70ef2e04830d
29 schema:url http://link.springer.com/10.1023%2FB%3AQUES.0000021142.51241.76
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N068dad24214d44bb8c8e6b337ce9773c schema:name doi
34 schema:value 10.1023/b:ques.0000021142.51241.76
35 rdf:type schema:PropertyValue
36 N16ff617474004e02876da3f67ee9c72f rdf:first sg:person.013374336621.69
37 rdf:rest N8deb76399a934e01bf46c83a723ebb33
38 N2c2ebff1882c4b4bab95d72ffcf86cfe schema:name INRIA–ENS, ENS, 45 rue d'Ulm, 75005, Paris, France
39 rdf:type schema:Organization
40 N50cc70cda58e4e569fa5cd2e59ff0270 schema:name dimensions_id
41 schema:value pub.1017179048
42 rdf:type schema:PropertyValue
43 N70b5284974be46569d7dd893f9778348 schema:issueNumber 1-2
44 rdf:type schema:PublicationIssue
45 N8908303449f24957ab95be19573c4309 schema:name readcube_id
46 schema:value 51d900732f0c986a1316f382d60dd951689cbd8590a6e50220305c35c6fa0b98
47 rdf:type schema:PropertyValue
48 N8deb76399a934e01bf46c83a723ebb33 rdf:first sg:person.016213456237.22
49 rdf:rest Nbc1186c315a9489d8804fb717ec04728
50 Nb1184263280b41fb8e44f84416d5ccc2 schema:name INRIA–ENS, ENS, 45 rue d'Ulm, 75005, Paris, France
51 rdf:type schema:Organization
52 Nb9f51f0008814e9dae6b70ef2e04830d schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Nbc1186c315a9489d8804fb717ec04728 rdf:first sg:person.010105104257.61
55 rdf:rest rdf:nil
56 Ndee989ce03174289aca76fcab367a99f schema:volumeNumber 46
57 rdf:type schema:PublicationVolume
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
62 schema:name Statistics
63 rdf:type schema:DefinedTerm
64 sg:journal.1048269 schema:issn 0257-0130
65 1572-9443
66 schema:name Queueing Systems
67 rdf:type schema:Periodical
68 sg:person.010105104257.61 schema:affiliation https://www.grid.ac/institutes/grid.9531.e
69 schema:familyName Foss
70 schema:givenName Serguei
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010105104257.61
72 rdf:type schema:Person
73 sg:person.013374336621.69 schema:affiliation N2c2ebff1882c4b4bab95d72ffcf86cfe
74 schema:familyName Baccelli
75 schema:givenName François
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374336621.69
77 rdf:type schema:Person
78 sg:person.016213456237.22 schema:affiliation Nb1184263280b41fb8e44f84416d5ccc2
79 schema:familyName Lelarge
80 schema:givenName Marc
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016213456237.22
82 rdf:type schema:Person
83 sg:pub.10.1023/a:1019176129224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009270978
84 https://doi.org/10.1023/a:1019176129224
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0304-4149(77)90047-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000866427
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1017/s0001867800009186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003630091
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1017/s0021900200040705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045500702
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1017/s0021900200048361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028106157
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1017/s0021900200102931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007096025
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.9531.e schema:alternateName Heriot-Watt University
97 schema:name Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Edinburgh, UK
98 Institute of Mathematics, 630090, Novosibirsk, Russia, and
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...