An Evaluation of Population Estimates in Florida: April 1, 2000 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-02

AUTHORS

Stanley K. Smith, Scott Cody

ABSTRACT

The housing unit (HU) method is the most commonly used method for making small-area population estimates in the United States. These estimates are used for a wide variety of budgeting, planning, and analytical purposes. Given their importance, periodic evaluations of their accuracy are essential. In this article, we evaluate the accuracy of a set of HU population estimates for counties and subcounty areas in Florida, as of April 1, 2000. We investigate the influence of differences in population size and growth rate on estimation errors; compare the accuracy of several alternative techniques for estimating each of the major components of the HU method; compare the accuracy of 2000 estimates with that of estimates produced in 1980 and 1990; compare the accuracy of HU population estimates with that of estimates derived from other estimation methods; consider the role of professional judgment and the use of averaging in the construction of population estimates; and explore the impact of controlling one set of estimates to another. Our results confirm a number of findings that have been reported before and provide empirical evidence on several issues that have received little attention in the literature. We conclude with several observations regarding future directions in population estimation research. More... »

PAGES

1-24

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/b:popu.0000019918.24143.c9

DOI

http://dx.doi.org/10.1023/b:popu.0000019918.24143.c9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004872019


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "University of Florida, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Stanley K.", 
        "id": "sg:person.07607321731.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07607321731.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "University of Florida, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cody", 
        "givenName": "Scott", 
        "id": "sg:person.01044064120.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044064120.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.2307/2061251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014666635", 
          "https://doi.org/10.2307/2061251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016537822148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020758577", 
          "https://doi.org/10.1023/a:1016537822148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1353/dem.2002.0040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025702030", 
          "https://doi.org/10.1353/dem.2002.0040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3828/twpr.18.2.ul31w6q4447g120r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026712220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2307/2061106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027807537", 
          "https://doi.org/10.2307/2061106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01944369408975574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037332982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03208591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044853045", 
          "https://doi.org/10.1007/bf03208591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-306-47630-3_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049677424", 
          "https://doi.org/10.1007/978-0-306-47630-3_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01944367708977786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053030078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1984.10478042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058302968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1986.10478272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2808054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070096145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2983171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070160945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2983171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070160945"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-02", 
    "datePublishedReg": "2004-02-01", 
    "description": "The housing unit (HU) method is the most commonly used method for making small-area population estimates in the United States. These estimates are used for a wide variety of budgeting, planning, and analytical purposes. Given their importance, periodic evaluations of their accuracy are essential. In this article, we evaluate the accuracy of a set of HU population estimates for counties and subcounty areas in Florida, as of April 1, 2000. We investigate the influence of differences in population size and growth rate on estimation errors; compare the accuracy of several alternative techniques for estimating each of the major components of the HU method; compare the accuracy of 2000 estimates with that of estimates produced in 1980 and 1990; compare the accuracy of HU population estimates with that of estimates derived from other estimation methods; consider the role of professional judgment and the use of averaging in the construction of population estimates; and explore the impact of controlling one set of estimates to another. Our results confirm a number of findings that have been reported before and provide empirical evidence on several issues that have received little attention in the literature. We conclude with several observations regarding future directions in population estimation research.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/b:popu.0000019918.24143.c9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094213", 
        "issn": [
          "0167-5923", 
          "1573-7829"
        ], 
        "name": "Population Research and Policy Review", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "An Evaluation of Population Estimates in Florida: April 1, 2000", 
    "pagination": "1-24", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "17370f0467a0f16e1d95075e876003f05d7430e50f8d1f54861ca80266d96c02"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/b:popu.0000019918.24143.c9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004872019"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/b:popu.0000019918.24143.c9", 
      "https://app.dimensions.ai/details/publication/pub.1004872019"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FB%3APOPU.0000019918.24143.c9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:popu.0000019918.24143.c9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:popu.0000019918.24143.c9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:popu.0000019918.24143.c9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:popu.0000019918.24143.c9'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/b:popu.0000019918.24143.c9 schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author Nc62f7001a9704a49be30ff79ad17be0f
4 schema:citation sg:pub.10.1007/978-0-306-47630-3_19
5 sg:pub.10.1007/bf03208591
6 sg:pub.10.1023/a:1016537822148
7 sg:pub.10.1353/dem.2002.0040
8 sg:pub.10.2307/2061106
9 sg:pub.10.2307/2061251
10 https://doi.org/10.1080/01621459.1984.10478042
11 https://doi.org/10.1080/01621459.1986.10478272
12 https://doi.org/10.1080/01944367708977786
13 https://doi.org/10.1080/01944369408975574
14 https://doi.org/10.2307/2808054
15 https://doi.org/10.2307/2983171
16 https://doi.org/10.3828/twpr.18.2.ul31w6q4447g120r
17 schema:datePublished 2004-02
18 schema:datePublishedReg 2004-02-01
19 schema:description The housing unit (HU) method is the most commonly used method for making small-area population estimates in the United States. These estimates are used for a wide variety of budgeting, planning, and analytical purposes. Given their importance, periodic evaluations of their accuracy are essential. In this article, we evaluate the accuracy of a set of HU population estimates for counties and subcounty areas in Florida, as of April 1, 2000. We investigate the influence of differences in population size and growth rate on estimation errors; compare the accuracy of several alternative techniques for estimating each of the major components of the HU method; compare the accuracy of 2000 estimates with that of estimates produced in 1980 and 1990; compare the accuracy of HU population estimates with that of estimates derived from other estimation methods; consider the role of professional judgment and the use of averaging in the construction of population estimates; and explore the impact of controlling one set of estimates to another. Our results confirm a number of findings that have been reported before and provide empirical evidence on several issues that have received little attention in the literature. We conclude with several observations regarding future directions in population estimation research.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N325fe388f75f4a6d9081e714dfb6643d
24 Nff7c7a313c1b46b283acf61e7b30ceb4
25 sg:journal.1094213
26 schema:name An Evaluation of Population Estimates in Florida: April 1, 2000
27 schema:pagination 1-24
28 schema:productId N505aa3b0d69c4791a4919cd779558357
29 Nbe822880ddb84935ba77f0a6a3c81117
30 Nec264bb54c6d48ce86989a3f096704df
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004872019
32 https://doi.org/10.1023/b:popu.0000019918.24143.c9
33 schema:sdDatePublished 2019-04-10T15:49
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N3c2aa86f5a724b1da1680cb879e4f4b3
36 schema:url http://link.springer.com/10.1023%2FB%3APOPU.0000019918.24143.c9
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N325fe388f75f4a6d9081e714dfb6643d schema:volumeNumber 23
41 rdf:type schema:PublicationVolume
42 N393e2689ddc2470986fc97425c1a0c29 schema:name University of Florida, Australia
43 rdf:type schema:Organization
44 N3c2aa86f5a724b1da1680cb879e4f4b3 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N505aa3b0d69c4791a4919cd779558357 schema:name readcube_id
47 schema:value 17370f0467a0f16e1d95075e876003f05d7430e50f8d1f54861ca80266d96c02
48 rdf:type schema:PropertyValue
49 N8f47301283184468820c0edf0cc84681 schema:name University of Florida, Australia
50 rdf:type schema:Organization
51 N9f4e9cb096c9403f8539055361930e49 rdf:first sg:person.01044064120.91
52 rdf:rest rdf:nil
53 Nbe822880ddb84935ba77f0a6a3c81117 schema:name doi
54 schema:value 10.1023/b:popu.0000019918.24143.c9
55 rdf:type schema:PropertyValue
56 Nc62f7001a9704a49be30ff79ad17be0f rdf:first sg:person.07607321731.48
57 rdf:rest N9f4e9cb096c9403f8539055361930e49
58 Nec264bb54c6d48ce86989a3f096704df schema:name dimensions_id
59 schema:value pub.1004872019
60 rdf:type schema:PropertyValue
61 Nff7c7a313c1b46b283acf61e7b30ceb4 schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
64 schema:name Economics
65 rdf:type schema:DefinedTerm
66 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
67 schema:name Econometrics
68 rdf:type schema:DefinedTerm
69 sg:journal.1094213 schema:issn 0167-5923
70 1573-7829
71 schema:name Population Research and Policy Review
72 rdf:type schema:Periodical
73 sg:person.01044064120.91 schema:affiliation N393e2689ddc2470986fc97425c1a0c29
74 schema:familyName Cody
75 schema:givenName Scott
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044064120.91
77 rdf:type schema:Person
78 sg:person.07607321731.48 schema:affiliation N8f47301283184468820c0edf0cc84681
79 schema:familyName Smith
80 schema:givenName Stanley K.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07607321731.48
82 rdf:type schema:Person
83 sg:pub.10.1007/978-0-306-47630-3_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049677424
84 https://doi.org/10.1007/978-0-306-47630-3_19
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf03208591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044853045
87 https://doi.org/10.1007/bf03208591
88 rdf:type schema:CreativeWork
89 sg:pub.10.1023/a:1016537822148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020758577
90 https://doi.org/10.1023/a:1016537822148
91 rdf:type schema:CreativeWork
92 sg:pub.10.1353/dem.2002.0040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025702030
93 https://doi.org/10.1353/dem.2002.0040
94 rdf:type schema:CreativeWork
95 sg:pub.10.2307/2061106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027807537
96 https://doi.org/10.2307/2061106
97 rdf:type schema:CreativeWork
98 sg:pub.10.2307/2061251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014666635
99 https://doi.org/10.2307/2061251
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1080/01621459.1984.10478042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058302968
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1080/01621459.1986.10478272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303249
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1080/01944367708977786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053030078
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1080/01944369408975574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037332982
108 rdf:type schema:CreativeWork
109 https://doi.org/10.2307/2808054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070096145
110 rdf:type schema:CreativeWork
111 https://doi.org/10.2307/2983171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070160945
112 rdf:type schema:CreativeWork
113 https://doi.org/10.3828/twpr.18.2.ul31w6q4447g120r schema:sameAs https://app.dimensions.ai/details/publication/pub.1026712220
114 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...