Synthesis of Aucore–Agshell type bimetallic nanoparticles for single molecule detection in solution by SERS method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-02

AUTHORS

Madhuri Mandal, Nikhil Ranjan Jana, Subrata Kundu, Sujit Kumar Ghosh, Mruganka Panigrahi, Tarasankar Pal

ABSTRACT

This paper reports the evolution of a new class of core–shell type, that is, Aucore–Agshell bimetallic nanoparticles by seed mediated technique for surface enhanced Raman scattering (SERS) study. Here it is demonstrated how to control the thickness of Ag-shell with the variation of gold seed (∼15 nm) to Ag ion concentration which in turn control the particle size in the range from 50 to 100 nm with increase of shell thickness. For 50 nm core–shell particles the thickness of the shell was ∼17 nm, for 70 nm particles the thickness was ∼27 nm and for 100 nm the thickness was ∼42 nm. SERS study was performed on those particles using the analyte crystal violet (CV) to examine the impact of the size and field effects of the bimetallics on SERS spectra. A surprising finding is that a small particle as low as 50 nm have been found to be highly efficient for SERS, even it enables the detection of a selected dye molecule down to single molecular level. The sensitivity of the SERS detection limit has been improved further with an activating reagent like NaCl. The newly modeled bimetallic system establishes a relationship between the local electromagnetic (EM) field effect and chemical effect (CE) on the enhancement of SERS spectra, which provides further insight into the enhancement mechanism of SERS. More... »

PAGES

53-61

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/b:nano.0000023227.17871.0f

DOI

http://dx.doi.org/10.1023/b:nano.0000023227.17871.0f

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024172470


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kharagpur", 
          "id": "https://www.grid.ac/institutes/grid.429017.9", 
          "name": [
            "Department of Chemistry, Indian Institute of Technology, 721 302, Kharagpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mandal", 
        "givenName": "Madhuri", 
        "id": "sg:person.0631363162.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631363162.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arkansas at Fayetteville", 
          "id": "https://www.grid.ac/institutes/grid.411017.2", 
          "name": [
            "Department of Chemistry, University of Arkansas, AR, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ranjan Jana", 
        "givenName": "Nikhil", 
        "id": "sg:person.01136772655.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136772655.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kharagpur", 
          "id": "https://www.grid.ac/institutes/grid.429017.9", 
          "name": [
            "Department of Chemistry, Indian Institute of Technology, 721 302, Kharagpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kundu", 
        "givenName": "Subrata", 
        "id": "sg:person.01247625545.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247625545.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kharagpur", 
          "id": "https://www.grid.ac/institutes/grid.429017.9", 
          "name": [
            "Department of Chemistry, Indian Institute of Technology, 721 302, Kharagpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar Ghosh", 
        "givenName": "Sujit", 
        "id": "sg:person.01130467555.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130467555.66"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Panigrahi", 
        "givenName": "Mruganka", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kharagpur", 
          "id": "https://www.grid.ac/institutes/grid.429017.9", 
          "name": [
            "Department of Chemistry, Indian Institute of Technology, 721 302, Kharagpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pal", 
        "givenName": "Tarasankar", 
        "id": "sg:person.0656430665.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656430665.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1146/annurev.physchem.49.1.441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003378447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.281.5385.2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006510768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/physci241020a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006984282", 
          "https://doi.org/10.1038/physci241020a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/physci241020a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006984282", 
          "https://doi.org/10.1038/physci241020a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/physci241020a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006984282", 
          "https://doi.org/10.1038/physci241020a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja972332i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007340341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-4555(199601)27:1<57::aid-jrs926>3.0.co;2-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010199153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.283.5408.1670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013495433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/4/5/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013763341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b108473a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014975418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/ft9918703881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021270198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm000662n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024615835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm000662n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024615835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.199300411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025419056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2614(81)85441-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028120211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5303.1102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032000189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/a827241z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037787278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/a827241z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037787278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/369040a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041847036", 
          "https://doi.org/10.1038/369040a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/39834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053153223", 
          "https://doi.org/10.1038/39834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/39834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053153223", 
          "https://doi.org/10.1038/39834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2614(74)85388-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053690804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr00098a010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053808914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac9809940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055075670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac9809940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055075670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j150668a038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055697766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00457a071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055734105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9815677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055870008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja992058n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055872453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja992128q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055872485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp011420t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056046321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp011420t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056046321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp012268y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056046896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp012268y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056046896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0256241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056050569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0256241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056050569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp982723z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056128299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp982723z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056128299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0009588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056141534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0009588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056141534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0100264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0100264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.2444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.2444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.57.783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.57.783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.265.5170.364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062548530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.271.5251.933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062552242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.2.001538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065170548"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-02", 
    "datePublishedReg": "2004-02-01", 
    "description": "This paper reports the evolution of a new class of core\u2013shell type, that is, Aucore\u2013Agshell bimetallic nanoparticles by seed mediated technique for surface enhanced Raman scattering (SERS) study. Here it is demonstrated how to control the thickness of Ag-shell with the variation of gold seed (\u223c15 nm) to Ag ion concentration which in turn control the particle size in the range from 50 to 100 nm with increase of shell thickness. For 50 nm core\u2013shell particles the thickness of the shell was \u223c17 nm, for 70 nm particles the thickness was \u223c27 nm and for 100 nm the thickness was \u223c42 nm. SERS study was performed on those particles using the analyte crystal violet (CV) to examine the impact of the size and field effects of the bimetallics on SERS spectra. A surprising finding is that a small particle as low as 50 nm have been found to be highly efficient for SERS, even it enables the detection of a selected dye molecule down to single molecular level. The sensitivity of the SERS detection limit has been improved further with an activating reagent like NaCl. The newly modeled bimetallic system establishes a relationship between the local electromagnetic (EM) field effect and chemical effect (CE) on the enhancement of SERS spectra, which provides further insight into the enhancement mechanism of SERS.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/b:nano.0000023227.17871.0f", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028317", 
        "issn": [
          "1388-0764", 
          "1572-896X"
        ], 
        "name": "Journal of Nanoparticle Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Synthesis of Aucore\u2013Agshell type bimetallic nanoparticles for single molecule detection in solution by SERS method", 
    "pagination": "53-61", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7328ffb47a990774290cc38be4f6bfe7dfcfdc8c0f772f5089656c4aba7f5dfa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/b:nano.0000023227.17871.0f"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024172470"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/b:nano.0000023227.17871.0f", 
      "https://app.dimensions.ai/details/publication/pub.1024172470"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FB%3ANANO.0000023227.17871.0f"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:nano.0000023227.17871.0f'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:nano.0000023227.17871.0f'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:nano.0000023227.17871.0f'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:nano.0000023227.17871.0f'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/b:nano.0000023227.17871.0f schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Na3d3ee5f9faa4bf08a9dfdec687e2273
4 schema:citation sg:pub.10.1038/369040a0
5 sg:pub.10.1038/39834
6 sg:pub.10.1038/physci241020a0
7 https://doi.org/10.1002/(sici)1097-4555(199601)27:1<57::aid-jrs926>3.0.co;2-j
8 https://doi.org/10.1002/anie.199300411
9 https://doi.org/10.1016/0009-2614(74)85388-1
10 https://doi.org/10.1016/0009-2614(81)85441-3
11 https://doi.org/10.1021/ac9809940
12 https://doi.org/10.1021/cm000662n
13 https://doi.org/10.1021/cr00098a010
14 https://doi.org/10.1021/j150668a038
15 https://doi.org/10.1021/ja00457a071
16 https://doi.org/10.1021/ja972332i
17 https://doi.org/10.1021/ja9815677
18 https://doi.org/10.1021/ja992058n
19 https://doi.org/10.1021/ja992128q
20 https://doi.org/10.1021/jp011420t
21 https://doi.org/10.1021/jp012268y
22 https://doi.org/10.1021/jp0256241
23 https://doi.org/10.1021/jp982723z
24 https://doi.org/10.1021/la0009588
25 https://doi.org/10.1021/nl0100264
26 https://doi.org/10.1039/a827241z
27 https://doi.org/10.1039/b108473a
28 https://doi.org/10.1039/ft9918703881
29 https://doi.org/10.1088/0953-8984/4/5/001
30 https://doi.org/10.1103/physrevlett.76.2444
31 https://doi.org/10.1103/physrevlett.78.1667
32 https://doi.org/10.1103/physrevlett.83.4357
33 https://doi.org/10.1103/revmodphys.57.783
34 https://doi.org/10.1126/science.265.5170.364
35 https://doi.org/10.1126/science.271.5251.933
36 https://doi.org/10.1126/science.275.5303.1102
37 https://doi.org/10.1126/science.281.5385.2016
38 https://doi.org/10.1126/science.283.5408.1670
39 https://doi.org/10.1146/annurev.physchem.49.1.441
40 https://doi.org/10.1364/josab.2.001538
41 schema:datePublished 2004-02
42 schema:datePublishedReg 2004-02-01
43 schema:description This paper reports the evolution of a new class of core–shell type, that is, Aucore–Agshell bimetallic nanoparticles by seed mediated technique for surface enhanced Raman scattering (SERS) study. Here it is demonstrated how to control the thickness of Ag-shell with the variation of gold seed (∼15 nm) to Ag ion concentration which in turn control the particle size in the range from 50 to 100 nm with increase of shell thickness. For 50 nm core–shell particles the thickness of the shell was ∼17 nm, for 70 nm particles the thickness was ∼27 nm and for 100 nm the thickness was ∼42 nm. SERS study was performed on those particles using the analyte crystal violet (CV) to examine the impact of the size and field effects of the bimetallics on SERS spectra. A surprising finding is that a small particle as low as 50 nm have been found to be highly efficient for SERS, even it enables the detection of a selected dye molecule down to single molecular level. The sensitivity of the SERS detection limit has been improved further with an activating reagent like NaCl. The newly modeled bimetallic system establishes a relationship between the local electromagnetic (EM) field effect and chemical effect (CE) on the enhancement of SERS spectra, which provides further insight into the enhancement mechanism of SERS.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf N411cc7a48bdf4d7ea1569c9fa25fd341
48 N74c235c9d364422fbc33b03dea2011fc
49 sg:journal.1028317
50 schema:name Synthesis of Aucore–Agshell type bimetallic nanoparticles for single molecule detection in solution by SERS method
51 schema:pagination 53-61
52 schema:productId N6f6f1dbb889746e583598f9789f291ff
53 Ne9c7dce4184443eba148b4ecc4ad4fbd
54 Nea452268f3314c89976ebec71ec3a3df
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024172470
56 https://doi.org/10.1023/b:nano.0000023227.17871.0f
57 schema:sdDatePublished 2019-04-10T16:40
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N6e08f9d7e1b84d88abfe6b613c555fd7
60 schema:url http://link.springer.com/10.1023%2FB%3ANANO.0000023227.17871.0f
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N100163846afa4a7380909cb4057847a2 rdf:first sg:person.01130467555.66
65 rdf:rest N5d7979867d364c2b9b6c5f4b7e2be7fd
66 N411cc7a48bdf4d7ea1569c9fa25fd341 schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 N5d7979867d364c2b9b6c5f4b7e2be7fd rdf:first Nc3ca9add77de443bb941a36704a21878
69 rdf:rest N91358dc1d75042c8b05580c29c4c42a1
70 N6e08f9d7e1b84d88abfe6b613c555fd7 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N6f6f1dbb889746e583598f9789f291ff schema:name readcube_id
73 schema:value 7328ffb47a990774290cc38be4f6bfe7dfcfdc8c0f772f5089656c4aba7f5dfa
74 rdf:type schema:PropertyValue
75 N74c235c9d364422fbc33b03dea2011fc schema:volumeNumber 6
76 rdf:type schema:PublicationVolume
77 N7c29503430784f8c855d3238f97ada53 rdf:first sg:person.01136772655.97
78 rdf:rest Neb62540538ac4b03887bef74adf520b5
79 N91358dc1d75042c8b05580c29c4c42a1 rdf:first sg:person.0656430665.70
80 rdf:rest rdf:nil
81 Na3d3ee5f9faa4bf08a9dfdec687e2273 rdf:first sg:person.0631363162.51
82 rdf:rest N7c29503430784f8c855d3238f97ada53
83 Nc3ca9add77de443bb941a36704a21878 schema:familyName Panigrahi
84 schema:givenName Mruganka
85 rdf:type schema:Person
86 Ne9c7dce4184443eba148b4ecc4ad4fbd schema:name doi
87 schema:value 10.1023/b:nano.0000023227.17871.0f
88 rdf:type schema:PropertyValue
89 Nea452268f3314c89976ebec71ec3a3df schema:name dimensions_id
90 schema:value pub.1024172470
91 rdf:type schema:PropertyValue
92 Neb62540538ac4b03887bef74adf520b5 rdf:first sg:person.01247625545.93
93 rdf:rest N100163846afa4a7380909cb4057847a2
94 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
95 schema:name Chemical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
98 schema:name Physical Chemistry (incl. Structural)
99 rdf:type schema:DefinedTerm
100 sg:journal.1028317 schema:issn 1388-0764
101 1572-896X
102 schema:name Journal of Nanoparticle Research
103 rdf:type schema:Periodical
104 sg:person.01130467555.66 schema:affiliation https://www.grid.ac/institutes/grid.429017.9
105 schema:familyName Kumar Ghosh
106 schema:givenName Sujit
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130467555.66
108 rdf:type schema:Person
109 sg:person.01136772655.97 schema:affiliation https://www.grid.ac/institutes/grid.411017.2
110 schema:familyName Ranjan Jana
111 schema:givenName Nikhil
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136772655.97
113 rdf:type schema:Person
114 sg:person.01247625545.93 schema:affiliation https://www.grid.ac/institutes/grid.429017.9
115 schema:familyName Kundu
116 schema:givenName Subrata
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247625545.93
118 rdf:type schema:Person
119 sg:person.0631363162.51 schema:affiliation https://www.grid.ac/institutes/grid.429017.9
120 schema:familyName Mandal
121 schema:givenName Madhuri
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631363162.51
123 rdf:type schema:Person
124 sg:person.0656430665.70 schema:affiliation https://www.grid.ac/institutes/grid.429017.9
125 schema:familyName Pal
126 schema:givenName Tarasankar
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656430665.70
128 rdf:type schema:Person
129 sg:pub.10.1038/369040a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041847036
130 https://doi.org/10.1038/369040a0
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/39834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053153223
133 https://doi.org/10.1038/39834
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/physci241020a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006984282
136 https://doi.org/10.1038/physci241020a0
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/(sici)1097-4555(199601)27:1<57::aid-jrs926>3.0.co;2-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1010199153
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/anie.199300411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025419056
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0009-2614(74)85388-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053690804
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/0009-2614(81)85441-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028120211
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1021/ac9809940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055075670
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1021/cm000662n schema:sameAs https://app.dimensions.ai/details/publication/pub.1024615835
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/cr00098a010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053808914
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1021/j150668a038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055697766
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/ja00457a071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055734105
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/ja972332i schema:sameAs https://app.dimensions.ai/details/publication/pub.1007340341
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1021/ja9815677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055870008
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/ja992058n schema:sameAs https://app.dimensions.ai/details/publication/pub.1055872453
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/ja992128q schema:sameAs https://app.dimensions.ai/details/publication/pub.1055872485
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1021/jp011420t schema:sameAs https://app.dimensions.ai/details/publication/pub.1056046321
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1021/jp012268y schema:sameAs https://app.dimensions.ai/details/publication/pub.1056046896
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1021/jp0256241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056050569
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1021/jp982723z schema:sameAs https://app.dimensions.ai/details/publication/pub.1056128299
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/la0009588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056141534
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/nl0100264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215040
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1039/a827241z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037787278
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1039/b108473a schema:sameAs https://app.dimensions.ai/details/publication/pub.1014975418
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1039/ft9918703881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021270198
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1088/0953-8984/4/5/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013763341
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.76.2444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812855
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevlett.78.1667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814800
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevlett.83.4357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820384
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/revmodphys.57.783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839078
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1126/science.265.5170.364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062548530
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1126/science.271.5251.933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062552242
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1126/science.275.5303.1102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032000189
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1126/science.281.5385.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006510768
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1126/science.283.5408.1670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013495433
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1146/annurev.physchem.49.1.441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003378447
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1364/josab.2.001538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065170548
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.411017.2 schema:alternateName University of Arkansas at Fayetteville
207 schema:name Department of Chemistry, University of Arkansas, AR, USA
208 rdf:type schema:Organization
209 https://www.grid.ac/institutes/grid.429017.9 schema:alternateName Indian Institute of Technology Kharagpur
210 schema:name Department of Chemistry, Indian Institute of Technology, 721 302, Kharagpur, India
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...