Ontology type: schema:ScholarlyArticle
2003-06
AUTHORSL. V. Moroz, G. Baratta, E. Distefano, G. Strazzulla, L. V. Starukhina, E. Dotto, M. A. Barucci
ABSTRACTTrans-Neptunian Objects (TNOs) and Centaurs show remarkable colour variationsin the visual and near-infrared spectral regions. Surface alteration processes such asspace weathering (e.g., bombardment with ions) and impact resurfacingmay play an important role in the colour diversity of such bodies. Ion irradiation ofhydrocarbon ices and their mixtures with water ice transforms neutral (grey) surfacecolours of ices to red and further to grey. Along with the ices, TNOs and Centaursprobably contain complex carbonaceous compounds, in particular, complexhydrocarbons. Unlike ices, such refractory organic materials have originally lowvisual albedos and red colours in the visible and near-infrared ranges. Here wepresent the first results of ion irradiation experiments on asphaltite. Asphaltite isa natural complex hydrocarbon material. The reflectance spectra of asphaltite inthe 0.4–0.8 μm range have been recorded before irradiation and after eachirradiation step. We demonstrate that irradiation of this red dark material with30 keV H+ and 15 keV N+ ions gradually transforms its colour from redto grey as a result of carbonization. A moderate increase in the visual albedo hasbeen observed. These results may imply that the surfaces of primitive red objectsoptically dominated by complex refractory organics may show a similar spaceweathering trend. Our laboratory results were compared with published coloursof TNOs and Centaurs. A broad variety of spectral colours observed for TNOs andCentaurs may be reproduced by various spectra of irradiated organics correspondingto different ion fluences. However, such objects probably also contain ices and silicatecomponents which show different space weathering trends. This fact, together with alack of information about albedos, may explain difficulties to reveal correlations between surface colours within TNO and Centaur populations and their other properties, such as absolute magnitudes and orbital parameters. More... »
PAGES279-289
http://scigraph.springernature.com/pub.10.1023/b:moon.0000031945.07336.43
DOIhttp://dx.doi.org/10.1023/b:moon.0000031945.07336.43
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1023058215
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Astronomical and Space Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Geology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "German Aerospace Center (DLR), Optical Space Systems, Rutherfordstr. 2, D-12489, Berlin, Germany",
"id": "http://www.grid.ac/institutes/grid.7551.6",
"name": [
"German Aerospace Center (DLR), Optical Space Systems, Rutherfordstr. 2, D-12489, Berlin, Germany"
],
"type": "Organization"
},
"familyName": "Moroz",
"givenName": "L. V.",
"id": "sg:person.010714713371.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010714713371.30"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "INAF, Catania Astrophysical Observatory, Via S. Sofia 78, I-95123, Catania, Italy",
"id": "http://www.grid.ac/institutes/grid.450009.8",
"name": [
"INAF, Catania Astrophysical Observatory, Via S. Sofia 78, I-95123, Catania, Italy"
],
"type": "Organization"
},
"familyName": "Baratta",
"givenName": "G.",
"id": "sg:person.01312002514.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312002514.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "INAF, Catania Astrophysical Observatory, Via S. Sofia 78, I-95123, Catania, Italy",
"id": "http://www.grid.ac/institutes/grid.450009.8",
"name": [
"INAF, Catania Astrophysical Observatory, Via S. Sofia 78, I-95123, Catania, Italy"
],
"type": "Organization"
},
"familyName": "Distefano",
"givenName": "E.",
"id": "sg:person.010465664726.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010465664726.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "INAF, Catania Astrophysical Observatory, Via S. Sofia 78, I-95123, Catania, Italy",
"id": "http://www.grid.ac/institutes/grid.450009.8",
"name": [
"INAF, Catania Astrophysical Observatory, Via S. Sofia 78, I-95123, Catania, Italy"
],
"type": "Organization"
},
"familyName": "Strazzulla",
"givenName": "G.",
"id": "sg:person.01175554114.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175554114.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Astronomical Institute of Kharkov National University, Sumskaya 35, 61022, Kharkov, Ukraine",
"id": "http://www.grid.ac/institutes/grid.18999.30",
"name": [
"Astronomical Institute of Kharkov National University, Sumskaya 35, 61022, Kharkov, Ukraine"
],
"type": "Organization"
},
"familyName": "Starukhina",
"givenName": "L. V.",
"id": "sg:person.011523026371.74",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011523026371.74"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "INAF, Catania Astrophysical Observatory, Via S. Sofia 78, I-95123, Catania, Italy",
"id": "http://www.grid.ac/institutes/grid.450009.8",
"name": [
"INAF, Catania Astrophysical Observatory, Via S. Sofia 78, I-95123, Catania, Italy"
],
"type": "Organization"
},
"familyName": "Dotto",
"givenName": "E.",
"id": "sg:person.012505135341.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012505135341.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Paris Observatory, 5 Pl. Jules Janssen, F-92195, Meudon Principal Cedex, France",
"id": "http://www.grid.ac/institutes/grid.4307.0",
"name": [
"Paris Observatory, 5 Pl. Jules Janssen, F-92195, Meudon Principal Cedex, France"
],
"type": "Organization"
},
"familyName": "Barucci",
"givenName": "M. A.",
"id": "sg:person.015045064531.57",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015045064531.57"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-94-011-5252-5_13",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046193523",
"https://doi.org/10.1007/978-94-011-5252-5_13"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/32108",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037305458",
"https://doi.org/10.1038/32108"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-011-3378-4_11",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014157821",
"https://doi.org/10.1007/978-94-011-3378-4_11"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-10920-x_13",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020629318",
"https://doi.org/10.1007/3-540-10920-x_13"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/326755a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019859520",
"https://doi.org/10.1038/326755a0"
],
"type": "CreativeWork"
}
],
"datePublished": "2003-06",
"datePublishedReg": "2003-06-01",
"description": "Trans-Neptunian Objects (TNOs) and Centaurs show remarkable colour variationsin the visual and near-infrared spectral regions. Surface alteration processes such asspace weathering (e.g., bombardment with ions) and impact resurfacingmay play an important role in the colour diversity of such bodies. Ion irradiation ofhydrocarbon ices and their mixtures with water ice transforms neutral (grey) surfacecolours of ices to red and further to grey. Along with the ices, TNOs and Centaursprobably contain complex carbonaceous compounds, in particular, complexhydrocarbons. Unlike ices, such refractory organic materials have originally lowvisual albedos and red colours in the visible and near-infrared ranges. Here wepresent the first results of ion irradiation experiments on asphaltite. Asphaltite isa natural complex hydrocarbon material. The reflectance spectra of asphaltite inthe 0.4\u20130.8 \u03bcm range have been recorded before irradiation and after eachirradiation step. We demonstrate that irradiation of this red dark material with30 keV H+ and 15 keV N+ ions gradually transforms its colour from redto grey as a result of carbonization. A moderate increase in the visual albedo hasbeen observed. These results may imply that the surfaces of primitive red objectsoptically dominated by complex refractory organics may show a similar spaceweathering trend. Our laboratory results were compared with published coloursof TNOs and Centaurs. A broad variety of spectral colours observed for TNOs andCentaurs may be reproduced by various spectra of irradiated organics correspondingto different ion fluences. However, such objects probably also contain ices and silicatecomponents which show different space weathering trends. This fact, together with alack of information about albedos, may explain difficulties to reveal correlations between surface colours within TNO and Centaur populations and their other properties, such as absolute magnitudes and orbital parameters.",
"genre": "article",
"id": "sg:pub.10.1023/b:moon.0000031945.07336.43",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1026186",
"issn": [
"0167-9295",
"1573-0794"
],
"name": "Earth, Moon, and Planets",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "92"
}
],
"keywords": [
"trans-Neptunian objects",
"ion irradiation experiments",
"result of carbonization",
"refractory organics",
"different ion fluences",
"refractory organic material",
"ion fluence",
"ion irradiation",
"carbonaceous compounds",
"organic materials",
"irradiation experiments",
"complex carbonaceous compounds",
"water ice",
"asphaltite",
"optical effects",
"surface alterations",
"spectral region",
"orbital parameters",
"ice",
"surface color",
"absolute magnitude",
"irradiation",
"carbonization",
"keV",
"such objects",
"red color",
"first results",
"ions",
"Centaur population",
"compounds",
"surface",
"organics",
"fluence",
"materials",
"range",
"reflectance",
"broad variety",
"spectral colors",
"results",
"albedo",
"properties",
"Centaur",
"mixture",
"laboratory results",
"parameters",
"spectra",
"color",
"hasbeen",
"objects",
"such bodies",
"red",
"weathering",
"experiments",
"magnitude",
"step",
"different spaces",
"increase",
"trends",
"effect",
"important role",
"region",
"moderate increase",
"variety",
"space",
"body",
"color diversity",
"difficulties",
"fact",
"alack",
"information",
"correlation",
"role",
"grey",
"alterations",
"diversity",
"implications",
"population"
],
"name": "Ion Irradiation of Asphaltite: Optical Effects and Implications for Trans-Neptunian Objects and Centaurs",
"pagination": "279-289",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1023058215"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1023/b:moon.0000031945.07336.43"
]
}
],
"sameAs": [
"https://doi.org/10.1023/b:moon.0000031945.07336.43",
"https://app.dimensions.ai/details/publication/pub.1023058215"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:22",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_365.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1023/b:moon.0000031945.07336.43"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:moon.0000031945.07336.43'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:moon.0000031945.07336.43'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:moon.0000031945.07336.43'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:moon.0000031945.07336.43'
This table displays all metadata directly associated to this object as RDF triples.
214 TRIPLES
22 PREDICATES
110 URIs
95 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1023/b:moon.0000031945.07336.43 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0201 |
3 | ″ | ″ | anzsrc-for:04 |
4 | ″ | ″ | anzsrc-for:0403 |
5 | ″ | schema:author | Nbc36896ac2f14186959dd927fa5bac78 |
6 | ″ | schema:citation | sg:pub.10.1007/3-540-10920-x_13 |
7 | ″ | ″ | sg:pub.10.1007/978-94-011-3378-4_11 |
8 | ″ | ″ | sg:pub.10.1007/978-94-011-5252-5_13 |
9 | ″ | ″ | sg:pub.10.1038/32108 |
10 | ″ | ″ | sg:pub.10.1038/326755a0 |
11 | ″ | schema:datePublished | 2003-06 |
12 | ″ | schema:datePublishedReg | 2003-06-01 |
13 | ″ | schema:description | Trans-Neptunian Objects (TNOs) and Centaurs show remarkable colour variationsin the visual and near-infrared spectral regions. Surface alteration processes such asspace weathering (e.g., bombardment with ions) and impact resurfacingmay play an important role in the colour diversity of such bodies. Ion irradiation ofhydrocarbon ices and their mixtures with water ice transforms neutral (grey) surfacecolours of ices to red and further to grey. Along with the ices, TNOs and Centaursprobably contain complex carbonaceous compounds, in particular, complexhydrocarbons. Unlike ices, such refractory organic materials have originally lowvisual albedos and red colours in the visible and near-infrared ranges. Here wepresent the first results of ion irradiation experiments on asphaltite. Asphaltite isa natural complex hydrocarbon material. The reflectance spectra of asphaltite inthe 0.4–0.8 μm range have been recorded before irradiation and after eachirradiation step. We demonstrate that irradiation of this red dark material with30 keV H+ and 15 keV N+ ions gradually transforms its colour from redto grey as a result of carbonization. A moderate increase in the visual albedo hasbeen observed. These results may imply that the surfaces of primitive red objectsoptically dominated by complex refractory organics may show a similar spaceweathering trend. Our laboratory results were compared with published coloursof TNOs and Centaurs. A broad variety of spectral colours observed for TNOs andCentaurs may be reproduced by various spectra of irradiated organics correspondingto different ion fluences. However, such objects probably also contain ices and silicatecomponents which show different space weathering trends. This fact, together with alack of information about albedos, may explain difficulties to reveal correlations between surface colours within TNO and Centaur populations and their other properties, such as absolute magnitudes and orbital parameters. |
14 | ″ | schema:genre | article |
15 | ″ | schema:inLanguage | en |
16 | ″ | schema:isAccessibleForFree | false |
17 | ″ | schema:isPartOf | N5bbc0dde0da3482f9640b7881e89edb4 |
18 | ″ | ″ | N9d7f2aaf80474b8e927fbd5a40da7e79 |
19 | ″ | ″ | sg:journal.1026186 |
20 | ″ | schema:keywords | Centaur |
21 | ″ | ″ | Centaur population |
22 | ″ | ″ | absolute magnitude |
23 | ″ | ″ | alack |
24 | ″ | ″ | albedo |
25 | ″ | ″ | alterations |
26 | ″ | ″ | asphaltite |
27 | ″ | ″ | body |
28 | ″ | ″ | broad variety |
29 | ″ | ″ | carbonaceous compounds |
30 | ″ | ″ | carbonization |
31 | ″ | ″ | color |
32 | ″ | ″ | color diversity |
33 | ″ | ″ | complex carbonaceous compounds |
34 | ″ | ″ | compounds |
35 | ″ | ″ | correlation |
36 | ″ | ″ | different ion fluences |
37 | ″ | ″ | different spaces |
38 | ″ | ″ | difficulties |
39 | ″ | ″ | diversity |
40 | ″ | ″ | effect |
41 | ″ | ″ | experiments |
42 | ″ | ″ | fact |
43 | ″ | ″ | first results |
44 | ″ | ″ | fluence |
45 | ″ | ″ | grey |
46 | ″ | ″ | hasbeen |
47 | ″ | ″ | ice |
48 | ″ | ″ | implications |
49 | ″ | ″ | important role |
50 | ″ | ″ | increase |
51 | ″ | ″ | information |
52 | ″ | ″ | ion fluence |
53 | ″ | ″ | ion irradiation |
54 | ″ | ″ | ion irradiation experiments |
55 | ″ | ″ | ions |
56 | ″ | ″ | irradiation |
57 | ″ | ″ | irradiation experiments |
58 | ″ | ″ | keV |
59 | ″ | ″ | laboratory results |
60 | ″ | ″ | magnitude |
61 | ″ | ″ | materials |
62 | ″ | ″ | mixture |
63 | ″ | ″ | moderate increase |
64 | ″ | ″ | objects |
65 | ″ | ″ | optical effects |
66 | ″ | ″ | orbital parameters |
67 | ″ | ″ | organic materials |
68 | ″ | ″ | organics |
69 | ″ | ″ | parameters |
70 | ″ | ″ | population |
71 | ″ | ″ | properties |
72 | ″ | ″ | range |
73 | ″ | ″ | red |
74 | ″ | ″ | red color |
75 | ″ | ″ | reflectance |
76 | ″ | ″ | refractory organic material |
77 | ″ | ″ | refractory organics |
78 | ″ | ″ | region |
79 | ″ | ″ | result of carbonization |
80 | ″ | ″ | results |
81 | ″ | ″ | role |
82 | ″ | ″ | space |
83 | ″ | ″ | spectra |
84 | ″ | ″ | spectral colors |
85 | ″ | ″ | spectral region |
86 | ″ | ″ | step |
87 | ″ | ″ | such bodies |
88 | ″ | ″ | such objects |
89 | ″ | ″ | surface |
90 | ″ | ″ | surface alterations |
91 | ″ | ″ | surface color |
92 | ″ | ″ | trans-Neptunian objects |
93 | ″ | ″ | trends |
94 | ″ | ″ | variety |
95 | ″ | ″ | water ice |
96 | ″ | ″ | weathering |
97 | ″ | schema:name | Ion Irradiation of Asphaltite: Optical Effects and Implications for Trans-Neptunian Objects and Centaurs |
98 | ″ | schema:pagination | 279-289 |
99 | ″ | schema:productId | N59a01276995b4b8bbd62cc922d09a9ed |
100 | ″ | ″ | Nf548e73575084b3f951a2d1898f63b8c |
101 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023058215 |
102 | ″ | ″ | https://doi.org/10.1023/b:moon.0000031945.07336.43 |
103 | ″ | schema:sdDatePublished | 2022-05-20T07:22 |
104 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
105 | ″ | schema:sdPublisher | Ncf2303e6af6649bd8bd6a33ad79e1d76 |
106 | ″ | schema:url | https://doi.org/10.1023/b:moon.0000031945.07336.43 |
107 | ″ | sgo:license | sg:explorer/license/ |
108 | ″ | sgo:sdDataset | articles |
109 | ″ | rdf:type | schema:ScholarlyArticle |
110 | N1cbc2450900543b4bc2bebc1274554ef | rdf:first | sg:person.012505135341.14 |
111 | ″ | rdf:rest | N4c414d7a533e48e0b6b71f680dab1a29 |
112 | N35a06db624c74042ac5c507ad0ddc599 | rdf:first | sg:person.010465664726.17 |
113 | ″ | rdf:rest | N401143cb7582460db894a678526fccdc |
114 | N401143cb7582460db894a678526fccdc | rdf:first | sg:person.01175554114.34 |
115 | ″ | rdf:rest | N6cb6a9007d404953a0737f30c1da1388 |
116 | N4c414d7a533e48e0b6b71f680dab1a29 | rdf:first | sg:person.015045064531.57 |
117 | ″ | rdf:rest | rdf:nil |
118 | N56de2687bec24df191e4ad89496744f8 | rdf:first | sg:person.01312002514.35 |
119 | ″ | rdf:rest | N35a06db624c74042ac5c507ad0ddc599 |
120 | N59a01276995b4b8bbd62cc922d09a9ed | schema:name | doi |
121 | ″ | schema:value | 10.1023/b:moon.0000031945.07336.43 |
122 | ″ | rdf:type | schema:PropertyValue |
123 | N5bbc0dde0da3482f9640b7881e89edb4 | schema:volumeNumber | 92 |
124 | ″ | rdf:type | schema:PublicationVolume |
125 | N6cb6a9007d404953a0737f30c1da1388 | rdf:first | sg:person.011523026371.74 |
126 | ″ | rdf:rest | N1cbc2450900543b4bc2bebc1274554ef |
127 | N9d7f2aaf80474b8e927fbd5a40da7e79 | schema:issueNumber | 1-4 |
128 | ″ | rdf:type | schema:PublicationIssue |
129 | Nbc36896ac2f14186959dd927fa5bac78 | rdf:first | sg:person.010714713371.30 |
130 | ″ | rdf:rest | N56de2687bec24df191e4ad89496744f8 |
131 | Ncf2303e6af6649bd8bd6a33ad79e1d76 | schema:name | Springer Nature - SN SciGraph project |
132 | ″ | rdf:type | schema:Organization |
133 | Nf548e73575084b3f951a2d1898f63b8c | schema:name | dimensions_id |
134 | ″ | schema:value | pub.1023058215 |
135 | ″ | rdf:type | schema:PropertyValue |
136 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
137 | ″ | schema:name | Physical Sciences |
138 | ″ | rdf:type | schema:DefinedTerm |
139 | anzsrc-for:0201 | schema:inDefinedTermSet | anzsrc-for: |
140 | ″ | schema:name | Astronomical and Space Sciences |
141 | ″ | rdf:type | schema:DefinedTerm |
142 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
143 | ″ | schema:name | Earth Sciences |
144 | ″ | rdf:type | schema:DefinedTerm |
145 | anzsrc-for:0403 | schema:inDefinedTermSet | anzsrc-for: |
146 | ″ | schema:name | Geology |
147 | ″ | rdf:type | schema:DefinedTerm |
148 | sg:journal.1026186 | schema:issn | 0167-9295 |
149 | ″ | ″ | 1573-0794 |
150 | ″ | schema:name | Earth, Moon, and Planets |
151 | ″ | schema:publisher | Springer Nature |
152 | ″ | rdf:type | schema:Periodical |
153 | sg:person.010465664726.17 | schema:affiliation | grid-institutes:grid.450009.8 |
154 | ″ | schema:familyName | Distefano |
155 | ″ | schema:givenName | E. |
156 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010465664726.17 |
157 | ″ | rdf:type | schema:Person |
158 | sg:person.010714713371.30 | schema:affiliation | grid-institutes:grid.7551.6 |
159 | ″ | schema:familyName | Moroz |
160 | ″ | schema:givenName | L. V. |
161 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010714713371.30 |
162 | ″ | rdf:type | schema:Person |
163 | sg:person.011523026371.74 | schema:affiliation | grid-institutes:grid.18999.30 |
164 | ″ | schema:familyName | Starukhina |
165 | ″ | schema:givenName | L. V. |
166 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011523026371.74 |
167 | ″ | rdf:type | schema:Person |
168 | sg:person.01175554114.34 | schema:affiliation | grid-institutes:grid.450009.8 |
169 | ″ | schema:familyName | Strazzulla |
170 | ″ | schema:givenName | G. |
171 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175554114.34 |
172 | ″ | rdf:type | schema:Person |
173 | sg:person.012505135341.14 | schema:affiliation | grid-institutes:grid.450009.8 |
174 | ″ | schema:familyName | Dotto |
175 | ″ | schema:givenName | E. |
176 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012505135341.14 |
177 | ″ | rdf:type | schema:Person |
178 | sg:person.01312002514.35 | schema:affiliation | grid-institutes:grid.450009.8 |
179 | ″ | schema:familyName | Baratta |
180 | ″ | schema:givenName | G. |
181 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312002514.35 |
182 | ″ | rdf:type | schema:Person |
183 | sg:person.015045064531.57 | schema:affiliation | grid-institutes:grid.4307.0 |
184 | ″ | schema:familyName | Barucci |
185 | ″ | schema:givenName | M. A. |
186 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015045064531.57 |
187 | ″ | rdf:type | schema:Person |
188 | sg:pub.10.1007/3-540-10920-x_13 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020629318 |
189 | ″ | ″ | https://doi.org/10.1007/3-540-10920-x_13 |
190 | ″ | rdf:type | schema:CreativeWork |
191 | sg:pub.10.1007/978-94-011-3378-4_11 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1014157821 |
192 | ″ | ″ | https://doi.org/10.1007/978-94-011-3378-4_11 |
193 | ″ | rdf:type | schema:CreativeWork |
194 | sg:pub.10.1007/978-94-011-5252-5_13 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046193523 |
195 | ″ | ″ | https://doi.org/10.1007/978-94-011-5252-5_13 |
196 | ″ | rdf:type | schema:CreativeWork |
197 | sg:pub.10.1038/32108 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1037305458 |
198 | ″ | ″ | https://doi.org/10.1038/32108 |
199 | ″ | rdf:type | schema:CreativeWork |
200 | sg:pub.10.1038/326755a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019859520 |
201 | ″ | ″ | https://doi.org/10.1038/326755a0 |
202 | ″ | rdf:type | schema:CreativeWork |
203 | grid-institutes:grid.18999.30 | schema:alternateName | Astronomical Institute of Kharkov National University, Sumskaya 35, 61022, Kharkov, Ukraine |
204 | ″ | schema:name | Astronomical Institute of Kharkov National University, Sumskaya 35, 61022, Kharkov, Ukraine |
205 | ″ | rdf:type | schema:Organization |
206 | grid-institutes:grid.4307.0 | schema:alternateName | Paris Observatory, 5 Pl. Jules Janssen, F-92195, Meudon Principal Cedex, France |
207 | ″ | schema:name | Paris Observatory, 5 Pl. Jules Janssen, F-92195, Meudon Principal Cedex, France |
208 | ″ | rdf:type | schema:Organization |
209 | grid-institutes:grid.450009.8 | schema:alternateName | INAF, Catania Astrophysical Observatory, Via S. Sofia 78, I-95123, Catania, Italy |
210 | ″ | schema:name | INAF, Catania Astrophysical Observatory, Via S. Sofia 78, I-95123, Catania, Italy |
211 | ″ | rdf:type | schema:Organization |
212 | grid-institutes:grid.7551.6 | schema:alternateName | German Aerospace Center (DLR), Optical Space Systems, Rutherfordstr. 2, D-12489, Berlin, Germany |
213 | ″ | schema:name | German Aerospace Center (DLR), Optical Space Systems, Rutherfordstr. 2, D-12489, Berlin, Germany |
214 | ″ | rdf:type | schema:Organization |