Dedifferentiation-mediated changes in transposition behavior make the Activator transposon an ideal tool for functional genomics in rice View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-02

AUTHORS

Ajay Kohli, Mark Q. Prynne, Berta Miro, Andy Pereira, Richard M. Twyman, Teresa Capell, Paul Christou

ABSTRACT

There is an inverse relationship between the level of cytosine methylation in genomic DNA and the activity of plant transposable elements. Increased transpositional activity is seen during early plant development when genomic methylation patterns are first erased and then reset. Prolonging the period of hypomethylation might therefore result in an increased transposition frequency, which would be useful for rapid genome saturation in transposon-tagged plant lines. We tested this hypothesis using transgenic rice plants containing Activator (Ac) from maize. R1 seeds from an Ac-tagged transgenic rice line were either directly germinated and grown to maturity, or induced to dedifferentiate in vitro, resulting in cell lines that were subsequently regenerated into multiple mature plants. Both populations were then analyzed for the presence, active reinsertion and amplification of Ac. Plants from each population showed excision-reinsertion events to both linked and unlinked sites. However, the frequency of transposition in plants regenerated from cell lines was more than nine-fold greater than that observed in plants germinated directly from seeds. Other aspects of transposon behavior were also markedly affected. For example, we observed a significantly larger proportion of transposition events to unlinked sites in cell line-derived plants. The tendency for Ac to insert into transcribed DNA was not affected by dedifferentiation. The differences in Ac activity coincided with a pronounced reduction in the level of genomic cytosine methylation in dedifferentiated cell cultures. We used the differential transposon behavior induced by dedifferentiation in the cell-line derived population for direct applications in functional genomics and validated the approach by recovering Ac insertions in a number of genes. Our results demonstrate that obtaining multiple Ac insertions is useful for functional annotation of the rice genome. More... »

PAGES

177-191

References to SciGraph publications

  • 1991-08. Genetic and molecular analysis of tissue-culture-derived Ac elements in THEORETICAL AND APPLIED GENETICS
  • 2001-11. Position effect of the excision frequency of the Antirrhinum transposon Tam3: implications for the degree of position-dependent methylation in the ends of the element in PLANT MOLECULAR BIOLOGY
  • 1995-12. Tissue culture-induced DNA methylation polymorphisms in repetitive DNA of tomato calli and regenerated plants in THEORETICAL AND APPLIED GENETICS
  • 2001-05-10. Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis in NATURE
  • 1991-10. Reactivation of a silent Ac following tissue culture is associated with heritable alterations in its methylation pattern in MOLECULAR GENETICS AND GENOMICS
  • 1996-10. Evidence forTAM3 activity in transgenicArabidopsis thaliana in IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY - PLANT
  • 1996-09. Molecular and functional characterization of Slide, anAc-like autonomous transposable element from tobacco in MOLECULAR GENETICS AND GENOMICS
  • 1990-11. DNA variation in tissue-culture-derived rice plants in THEORETICAL AND APPLIED GENETICS
  • 1993-07. DNA methylation and tissue culture-induced variation in plants in IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY - PLANT
  • 1993-09. Selection for enhanced germinal excision of Ac in transgenic Arabidopsis thaliana in THEORETICAL AND APPLIED GENETICS
  • 2000-11-15. Tnt1 transposition events are induced by in vitro transformation of Arabidopsis thaliana, and transposed copies integrate into genes in MOLECULAR GENETICS AND GENOMICS
  • 1997-09. Transposon tagging in rice in PLANT MOLECULAR BIOLOGY
  • 1998-07. An Efficient Rice Transformation System Utilizing Mature Seed-derived Explants and a Portable, Inexpensive Particle Bombardment Device in TRANSGENIC RESEARCH
  • 2001-05. Early and multiple Ac transpositions in rice suitable for efficient insertional mutagenesis in PLANT MOLECULAR BIOLOGY
  • 1998-02. The green fluorescent protein (GFP) as a vital screenable marker in rice transformation in THEORETICAL AND APPLIED GENETICS
  • 2001-09. Tagged Transcriptome Display (TTD) in indica rice using Ac transposition in MOLECULAR GENETICS AND GENOMICS
  • 1994-08. Maintenance of the induced hypomethylated state of tobacco nuclear repetitive DNA sequences in the course of protoplast and plant regeneration in PLANTA
  • 2002-05-18. Tissue-culture enhanced transposition of the maize transposable element Dissociation in Brassica oleracea var. 'Italica' in THEORETICAL AND APPLIED GENETICS
  • 2000-06. Somaclonal variation in oil palm (Elaeis guineensis Jacq.): the DNA methylation hypothesis in PLANT CELL REPORTS
  • 1991-01. Activation of the maize transposable element Suppressor-mutator (Spm) in tissue culture in THEORETICAL AND APPLIED GENETICS
  • 1997-04. Somatic variation during long term subculturing of plant cells caused by insertion of a transposable element in a phenylalanine ammonia-lyase (PAL) gene in MOLECULAR GENETICS AND GENOMICS
  • 1997-09. Retrotransposons of rice: their regulation and use for genome analysis in PLANT MOLECULAR BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/b:molb.0000018768.36290.94

    DOI

    http://dx.doi.org/10.1023/b:molb.0000018768.36290.94

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041807993


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Norwich Bio-Incubator, Genome Centre, Colney Lane, NR4 7UH, Norwich, UK", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Norwich Bio-Incubator, Genome Centre, Colney Lane, NR4 7UH, Norwich, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kohli", 
            "givenName": "Ajay", 
            "id": "sg:person.01276631521.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276631521.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Woodham Mortimer, Lion Seeds Ltd., CM9 6SN, Essex, UK", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Woodham Mortimer, Lion Seeds Ltd., CM9 6SN, Essex, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Prynne", 
            "givenName": "Mark Q.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fraunhofer Institute for Molecular Biotechnology, Auf dem Aberg 1, D-57392, Schmallenberg, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Fraunhofer Institute for Molecular Biotechnology, Auf dem Aberg 1, D-57392, Schmallenberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miro", 
            "givenName": "Berta", 
            "id": "sg:person.01346736101.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346736101.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Plant Genomics Unit, Plant Research International, PO Box 16, 6700 AA, Wageningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Plant Genomics Unit, Plant Research International, PO Box 16, 6700 AA, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pereira", 
            "givenName": "Andy", 
            "id": "sg:person.01344430566.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344430566.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biology, University of York, YO10 5DD, Heslington, York, UK", 
              "id": "http://www.grid.ac/institutes/grid.5685.e", 
              "name": [
                "Department of Biology, University of York, YO10 5DD, Heslington, York, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Twyman", 
            "givenName": "Richard M.", 
            "id": "sg:person.01044515747.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044515747.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fraunhofer Institute for Molecular Biotechnology, Auf dem Aberg 1, D-57392, Schmallenberg, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Fraunhofer Institute for Molecular Biotechnology, Auf dem Aberg 1, D-57392, Schmallenberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Capell", 
            "givenName": "Teresa", 
            "id": "sg:person.0756712373.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756712373.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fraunhofer Institute for Molecular Biotechnology, Auf dem Aberg 1, D-57392, Schmallenberg, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Fraunhofer Institute for Molecular Biotechnology, Auf dem Aberg 1, D-57392, Schmallenberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Christou", 
            "givenName": "Paul", 
            "id": "sg:person.01124124312.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124124312.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00220938", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036953803", 
              "https://doi.org/10.1007/bf00220938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00197529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051295208", 
              "https://doi.org/10.1007/bf00197529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-002-0882-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042342696", 
              "https://doi.org/10.1007/s00122-002-0882-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220050723", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005385447", 
              "https://doi.org/10.1007/s001220050723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02822694", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052434845", 
              "https://doi.org/10.1007/bf02822694"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002999900177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050528955", 
              "https://doi.org/10.1007/s002999900177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00267457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034300351", 
              "https://doi.org/10.1007/bf00267457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00226117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047677205", 
              "https://doi.org/10.1007/bf00226117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004380050433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045278025", 
              "https://doi.org/10.1007/s004380050433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004380100528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045488435", 
              "https://doi.org/10.1007/s004380100528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00226202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016609774", 
              "https://doi.org/10.1007/bf00226202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005769605026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006698384", 
              "https://doi.org/10.1023/a:1005769605026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00224228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031337824", 
              "https://doi.org/10.1007/bf00224228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010607318694", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046544116", 
              "https://doi.org/10.1023/a:1010607318694"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1011892003996", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032852867", 
              "https://doi.org/10.1023/a:1011892003996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02173003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029562592", 
              "https://doi.org/10.1007/bf02173003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008870012568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043560643", 
              "https://doi.org/10.1023/a:1008870012568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35075612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053293277", 
              "https://doi.org/10.1038/35075612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00211042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035098866", 
              "https://doi.org/10.1007/bf00211042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004380000387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042360262", 
              "https://doi.org/10.1007/s004380000387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005774705893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038751451", 
              "https://doi.org/10.1023/a:1005774705893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02632283", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035717745", 
              "https://doi.org/10.1007/bf02632283"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-02", 
        "datePublishedReg": "2004-02-01", 
        "description": "There is an inverse relationship between the level of cytosine methylation in genomic DNA and the activity of plant transposable elements. Increased transpositional activity is seen during early plant development when genomic methylation patterns are first erased and then reset. Prolonging the period of hypomethylation might therefore result in an increased transposition frequency, which would be useful for rapid genome saturation in transposon-tagged plant lines. We tested this hypothesis using transgenic rice plants containing Activator (Ac) from maize. R1 seeds from an Ac-tagged transgenic rice line were either directly germinated and grown to maturity, or induced to dedifferentiate in vitro, resulting in cell lines that were subsequently regenerated into multiple mature plants. Both populations were then analyzed for the presence, active reinsertion and amplification of Ac. Plants from each population showed excision-reinsertion events to both linked and unlinked sites. However, the frequency of transposition in plants regenerated from cell lines was more than nine-fold greater than that observed in plants germinated directly from seeds. Other aspects of transposon behavior were also markedly affected. For example, we observed a significantly larger proportion of transposition events to unlinked sites in cell line-derived plants. The tendency for Ac to insert into transcribed DNA was not affected by dedifferentiation. The differences in Ac activity coincided with a pronounced reduction in the level of genomic cytosine methylation in dedifferentiated cell cultures. We used the differential transposon behavior induced by dedifferentiation in the cell-line derived population for direct applications in functional genomics and validated the approach by recovering Ac insertions in a number of genes. Our results demonstrate that obtaining multiple Ac insertions is useful for functional annotation of the rice genome.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/b:molb.0000018768.36290.94", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1114043", 
            "issn": [
              "1380-3743", 
              "1572-9788"
            ], 
            "name": "Molecular Breeding", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "keywords": [
          "functional genomics", 
          "cytosine methylation", 
          "transposon behavior", 
          "unlinked sites", 
          "Ac insertion", 
          "dedifferentiated cell cultures", 
          "plant transposable elements", 
          "genomic cytosine methylation", 
          "transgenic rice plants", 
          "early plant development", 
          "genomic methylation patterns", 
          "transgenic rice lines", 
          "number of genes", 
          "frequency of transposition", 
          "cell lines", 
          "rice genome", 
          "plant development", 
          "plant lines", 
          "R1 seeds", 
          "transposable elements", 
          "mature plants", 
          "genome saturation", 
          "functional annotation", 
          "transpositional activity", 
          "methylation patterns", 
          "transposition events", 
          "rice lines", 
          "rice plants", 
          "genomic DNA", 
          "transposition behavior", 
          "transposition frequency", 
          "plants", 
          "genomics", 
          "methylation", 
          "cell cultures", 
          "DNA", 
          "seeds", 
          "activator", 
          "dedifferentiation", 
          "genome", 
          "transposon", 
          "hypomethylation", 
          "genes", 
          "maize", 
          "population", 
          "lines", 
          "rice", 
          "activity", 
          "sites", 
          "insertion", 
          "annotation", 
          "large proportion", 
          "AC activity", 
          "vitro", 
          "amplification", 
          "ideal tool", 
          "pronounced reduction", 
          "events", 
          "maturity", 
          "transposition", 
          "levels", 
          "culture", 
          "inverse relationship", 
          "patterns", 
          "hypothesis", 
          "development", 
          "presence", 
          "elements", 
          "changes", 
          "proportion", 
          "direct application", 
          "number", 
          "tool", 
          "relationship", 
          "differences", 
          "frequency", 
          "aspects", 
          "reinsertion", 
          "results", 
          "reduction", 
          "AC", 
          "example", 
          "behavior", 
          "approach", 
          "period", 
          "tendency", 
          "applications", 
          "saturation", 
          "period of hypomethylation", 
          "rapid genome saturation", 
          "multiple mature plants", 
          "active reinsertion", 
          "amplification of Ac", 
          "excision-reinsertion events", 
          "cell line-derived plants", 
          "line-derived plants", 
          "differential transposon behavior", 
          "multiple Ac insertions", 
          "Dedifferentiation-mediated changes"
        ], 
        "name": "Dedifferentiation-mediated changes in transposition behavior make the Activator transposon an ideal tool for functional genomics in rice", 
        "pagination": "177-191", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041807993"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/b:molb.0000018768.36290.94"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/b:molb.0000018768.36290.94", 
          "https://app.dimensions.ai/details/publication/pub.1041807993"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_379.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/b:molb.0000018768.36290.94"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:molb.0000018768.36290.94'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:molb.0000018768.36290.94'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:molb.0000018768.36290.94'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:molb.0000018768.36290.94'


     

    This table displays all metadata directly associated to this object as RDF triples.

    300 TRIPLES      22 PREDICATES      148 URIs      117 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/b:molb.0000018768.36290.94 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 anzsrc-for:0607
    4 schema:author N8d31fd5ba5b04ff8889c77baa0316657
    5 schema:citation sg:pub.10.1007/bf00197529
    6 sg:pub.10.1007/bf00211042
    7 sg:pub.10.1007/bf00220938
    8 sg:pub.10.1007/bf00224228
    9 sg:pub.10.1007/bf00226117
    10 sg:pub.10.1007/bf00226202
    11 sg:pub.10.1007/bf00267457
    12 sg:pub.10.1007/bf02173003
    13 sg:pub.10.1007/bf02632283
    14 sg:pub.10.1007/bf02822694
    15 sg:pub.10.1007/s00122-002-0882-8
    16 sg:pub.10.1007/s001220050723
    17 sg:pub.10.1007/s002999900177
    18 sg:pub.10.1007/s004380000387
    19 sg:pub.10.1007/s004380050433
    20 sg:pub.10.1007/s004380100528
    21 sg:pub.10.1023/a:1005769605026
    22 sg:pub.10.1023/a:1005774705893
    23 sg:pub.10.1023/a:1008870012568
    24 sg:pub.10.1023/a:1010607318694
    25 sg:pub.10.1023/a:1011892003996
    26 sg:pub.10.1038/35075612
    27 schema:datePublished 2004-02
    28 schema:datePublishedReg 2004-02-01
    29 schema:description There is an inverse relationship between the level of cytosine methylation in genomic DNA and the activity of plant transposable elements. Increased transpositional activity is seen during early plant development when genomic methylation patterns are first erased and then reset. Prolonging the period of hypomethylation might therefore result in an increased transposition frequency, which would be useful for rapid genome saturation in transposon-tagged plant lines. We tested this hypothesis using transgenic rice plants containing Activator (Ac) from maize. R1 seeds from an Ac-tagged transgenic rice line were either directly germinated and grown to maturity, or induced to dedifferentiate in vitro, resulting in cell lines that were subsequently regenerated into multiple mature plants. Both populations were then analyzed for the presence, active reinsertion and amplification of Ac. Plants from each population showed excision-reinsertion events to both linked and unlinked sites. However, the frequency of transposition in plants regenerated from cell lines was more than nine-fold greater than that observed in plants germinated directly from seeds. Other aspects of transposon behavior were also markedly affected. For example, we observed a significantly larger proportion of transposition events to unlinked sites in cell line-derived plants. The tendency for Ac to insert into transcribed DNA was not affected by dedifferentiation. The differences in Ac activity coincided with a pronounced reduction in the level of genomic cytosine methylation in dedifferentiated cell cultures. We used the differential transposon behavior induced by dedifferentiation in the cell-line derived population for direct applications in functional genomics and validated the approach by recovering Ac insertions in a number of genes. Our results demonstrate that obtaining multiple Ac insertions is useful for functional annotation of the rice genome.
    30 schema:genre article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N10f3591d86244b5597be7ef02eca6204
    34 Ncda234615d6b43ac99b743c1df5c3c22
    35 sg:journal.1114043
    36 schema:keywords AC
    37 AC activity
    38 Ac insertion
    39 DNA
    40 Dedifferentiation-mediated changes
    41 R1 seeds
    42 activator
    43 active reinsertion
    44 activity
    45 amplification
    46 amplification of Ac
    47 annotation
    48 applications
    49 approach
    50 aspects
    51 behavior
    52 cell cultures
    53 cell line-derived plants
    54 cell lines
    55 changes
    56 culture
    57 cytosine methylation
    58 dedifferentiated cell cultures
    59 dedifferentiation
    60 development
    61 differences
    62 differential transposon behavior
    63 direct application
    64 early plant development
    65 elements
    66 events
    67 example
    68 excision-reinsertion events
    69 frequency
    70 frequency of transposition
    71 functional annotation
    72 functional genomics
    73 genes
    74 genome
    75 genome saturation
    76 genomic DNA
    77 genomic cytosine methylation
    78 genomic methylation patterns
    79 genomics
    80 hypomethylation
    81 hypothesis
    82 ideal tool
    83 insertion
    84 inverse relationship
    85 large proportion
    86 levels
    87 line-derived plants
    88 lines
    89 maize
    90 mature plants
    91 maturity
    92 methylation
    93 methylation patterns
    94 multiple Ac insertions
    95 multiple mature plants
    96 number
    97 number of genes
    98 patterns
    99 period
    100 period of hypomethylation
    101 plant development
    102 plant lines
    103 plant transposable elements
    104 plants
    105 population
    106 presence
    107 pronounced reduction
    108 proportion
    109 rapid genome saturation
    110 reduction
    111 reinsertion
    112 relationship
    113 results
    114 rice
    115 rice genome
    116 rice lines
    117 rice plants
    118 saturation
    119 seeds
    120 sites
    121 tendency
    122 tool
    123 transgenic rice lines
    124 transgenic rice plants
    125 transposable elements
    126 transposition
    127 transposition behavior
    128 transposition events
    129 transposition frequency
    130 transpositional activity
    131 transposon
    132 transposon behavior
    133 unlinked sites
    134 vitro
    135 schema:name Dedifferentiation-mediated changes in transposition behavior make the Activator transposon an ideal tool for functional genomics in rice
    136 schema:pagination 177-191
    137 schema:productId N9f01982d21904786965a0736ba36d707
    138 Naeef008e4a8246899264b502798a8883
    139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041807993
    140 https://doi.org/10.1023/b:molb.0000018768.36290.94
    141 schema:sdDatePublished 2021-11-01T18:07
    142 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    143 schema:sdPublisher Nb81955d084404c1d923191162d912ca6
    144 schema:url https://doi.org/10.1023/b:molb.0000018768.36290.94
    145 sgo:license sg:explorer/license/
    146 sgo:sdDataset articles
    147 rdf:type schema:ScholarlyArticle
    148 N0dab0a3248be4a059e5896a5cc22cdd1 rdf:first sg:person.0756712373.76
    149 rdf:rest N26af2c454364453696cf7c96cacbb49a
    150 N10f3591d86244b5597be7ef02eca6204 schema:issueNumber 2
    151 rdf:type schema:PublicationIssue
    152 N26af2c454364453696cf7c96cacbb49a rdf:first sg:person.01124124312.49
    153 rdf:rest rdf:nil
    154 N432f68d25a25413886649c0d07baeaab rdf:first sg:person.01344430566.76
    155 rdf:rest Nded4b80ac6d54e5c939a72ae54dd27fd
    156 N61d93a1cc1e84c799e9ec7472afd390d rdf:first sg:person.01346736101.48
    157 rdf:rest N432f68d25a25413886649c0d07baeaab
    158 N6f674ce8ee9446c8be29a70365dfc53e rdf:first N8e75261ae7e04787ad2370029951b849
    159 rdf:rest N61d93a1cc1e84c799e9ec7472afd390d
    160 N8d31fd5ba5b04ff8889c77baa0316657 rdf:first sg:person.01276631521.54
    161 rdf:rest N6f674ce8ee9446c8be29a70365dfc53e
    162 N8e75261ae7e04787ad2370029951b849 schema:affiliation grid-institutes:None
    163 schema:familyName Prynne
    164 schema:givenName Mark Q.
    165 rdf:type schema:Person
    166 N9f01982d21904786965a0736ba36d707 schema:name doi
    167 schema:value 10.1023/b:molb.0000018768.36290.94
    168 rdf:type schema:PropertyValue
    169 Naeef008e4a8246899264b502798a8883 schema:name dimensions_id
    170 schema:value pub.1041807993
    171 rdf:type schema:PropertyValue
    172 Nb81955d084404c1d923191162d912ca6 schema:name Springer Nature - SN SciGraph project
    173 rdf:type schema:Organization
    174 Ncda234615d6b43ac99b743c1df5c3c22 schema:volumeNumber 13
    175 rdf:type schema:PublicationVolume
    176 Nded4b80ac6d54e5c939a72ae54dd27fd rdf:first sg:person.01044515747.54
    177 rdf:rest N0dab0a3248be4a059e5896a5cc22cdd1
    178 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    179 schema:name Biological Sciences
    180 rdf:type schema:DefinedTerm
    181 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    182 schema:name Genetics
    183 rdf:type schema:DefinedTerm
    184 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    185 schema:name Plant Biology
    186 rdf:type schema:DefinedTerm
    187 sg:journal.1114043 schema:issn 1380-3743
    188 1572-9788
    189 schema:name Molecular Breeding
    190 schema:publisher Springer Nature
    191 rdf:type schema:Periodical
    192 sg:person.01044515747.54 schema:affiliation grid-institutes:grid.5685.e
    193 schema:familyName Twyman
    194 schema:givenName Richard M.
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044515747.54
    196 rdf:type schema:Person
    197 sg:person.01124124312.49 schema:affiliation grid-institutes:None
    198 schema:familyName Christou
    199 schema:givenName Paul
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124124312.49
    201 rdf:type schema:Person
    202 sg:person.01276631521.54 schema:affiliation grid-institutes:None
    203 schema:familyName Kohli
    204 schema:givenName Ajay
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276631521.54
    206 rdf:type schema:Person
    207 sg:person.01344430566.76 schema:affiliation grid-institutes:grid.4818.5
    208 schema:familyName Pereira
    209 schema:givenName Andy
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344430566.76
    211 rdf:type schema:Person
    212 sg:person.01346736101.48 schema:affiliation grid-institutes:None
    213 schema:familyName Miro
    214 schema:givenName Berta
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346736101.48
    216 rdf:type schema:Person
    217 sg:person.0756712373.76 schema:affiliation grid-institutes:None
    218 schema:familyName Capell
    219 schema:givenName Teresa
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756712373.76
    221 rdf:type schema:Person
    222 sg:pub.10.1007/bf00197529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051295208
    223 https://doi.org/10.1007/bf00197529
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/bf00211042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035098866
    226 https://doi.org/10.1007/bf00211042
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/bf00220938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036953803
    229 https://doi.org/10.1007/bf00220938
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/bf00224228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031337824
    232 https://doi.org/10.1007/bf00224228
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/bf00226117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047677205
    235 https://doi.org/10.1007/bf00226117
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/bf00226202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016609774
    238 https://doi.org/10.1007/bf00226202
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/bf00267457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034300351
    241 https://doi.org/10.1007/bf00267457
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/bf02173003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029562592
    244 https://doi.org/10.1007/bf02173003
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1007/bf02632283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035717745
    247 https://doi.org/10.1007/bf02632283
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/bf02822694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052434845
    250 https://doi.org/10.1007/bf02822694
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/s00122-002-0882-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042342696
    253 https://doi.org/10.1007/s00122-002-0882-8
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1007/s001220050723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005385447
    256 https://doi.org/10.1007/s001220050723
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1007/s002999900177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050528955
    259 https://doi.org/10.1007/s002999900177
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1007/s004380000387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042360262
    262 https://doi.org/10.1007/s004380000387
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1007/s004380050433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045278025
    265 https://doi.org/10.1007/s004380050433
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1007/s004380100528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045488435
    268 https://doi.org/10.1007/s004380100528
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1023/a:1005769605026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006698384
    271 https://doi.org/10.1023/a:1005769605026
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1023/a:1005774705893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038751451
    274 https://doi.org/10.1023/a:1005774705893
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1023/a:1008870012568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043560643
    277 https://doi.org/10.1023/a:1008870012568
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1023/a:1010607318694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046544116
    280 https://doi.org/10.1023/a:1010607318694
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1023/a:1011892003996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032852867
    283 https://doi.org/10.1023/a:1011892003996
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/35075612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053293277
    286 https://doi.org/10.1038/35075612
    287 rdf:type schema:CreativeWork
    288 grid-institutes:None schema:alternateName Fraunhofer Institute for Molecular Biotechnology, Auf dem Aberg 1, D-57392, Schmallenberg, Germany
    289 Norwich Bio-Incubator, Genome Centre, Colney Lane, NR4 7UH, Norwich, UK
    290 Woodham Mortimer, Lion Seeds Ltd., CM9 6SN, Essex, UK
    291 schema:name Fraunhofer Institute for Molecular Biotechnology, Auf dem Aberg 1, D-57392, Schmallenberg, Germany
    292 Norwich Bio-Incubator, Genome Centre, Colney Lane, NR4 7UH, Norwich, UK
    293 Woodham Mortimer, Lion Seeds Ltd., CM9 6SN, Essex, UK
    294 rdf:type schema:Organization
    295 grid-institutes:grid.4818.5 schema:alternateName Plant Genomics Unit, Plant Research International, PO Box 16, 6700 AA, Wageningen, The Netherlands
    296 schema:name Plant Genomics Unit, Plant Research International, PO Box 16, 6700 AA, Wageningen, The Netherlands
    297 rdf:type schema:Organization
    298 grid-institutes:grid.5685.e schema:alternateName Department of Biology, University of York, YO10 5DD, Heslington, York, UK
    299 schema:name Department of Biology, University of York, YO10 5DD, Heslington, York, UK
    300 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...