Complex Parametric Vibrations of Flexible Rectangular Plates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-06

AUTHORS

J. Awrejcewicz, V.A. Krysko, A.V. Krysko

ABSTRACT

In this paper we consider parametric oscillations of flexible plates within the model of von Kármán equations. First we propose the general iterational method to find solutions to even more general problem governed by the von Kármán–Vlasov–Mushtari equations. In the language of physics the found solutions define stress–strain state of flexible shallow shell with a bounded convex space ΩεR2 and with sufficiently smooth boundary Γ. The new variational formulation of the problem has been proposed and his validity and application has been discussed using precise mathematical treatment. Then, using the earlier introduced theoretical results, an effective algorithm has been applied to convert problem of finding solutions to hybrid type partial differential equations of von Kármán form to that of the ordinary differential (ODEs) and algebraic (AEs) equations. Mechanisms of transition to chaos of deterministic systems with infinite number of degrees of freedom are presented. Comparison of mechanisms of transition to chaos with known ones is performed. The following cases of longitudinal loads of different sign are investigated: parametric load acting along X direction only, and parametric load acting in both directions X and Y with the same amplitude and frequency. More... »

PAGES

221-244

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/b:mecc.0000022845.52667.b0

DOI

http://dx.doi.org/10.1023/b:mecc.0000022845.52667.b0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047600651


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Automatics and Biomechanics, Technical University of Lodz, 1/15 Stefanowski St., 90-924, Lodz, Poland", 
          "id": "http://www.grid.ac/institutes/grid.412284.9", 
          "name": [
            "Department of Automatics and Biomechanics, Technical University of Lodz, 1/15 Stefanowski St., 90-924, Lodz, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Awrejcewicz", 
        "givenName": "J.", 
        "id": "sg:person.012103132446.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Saratov State University, B. Sadovaya 96a, 410054, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "Department of Mathematics, Saratov State University, B. Sadovaya 96a, 410054, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krysko", 
        "givenName": "V.A.", 
        "id": "sg:person.015167266033.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Saratov State University, B. Sadovaya 96a, 410054, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "Department of Mathematics, Saratov State University, B. Sadovaya 96a, 410054, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krysko", 
        "givenName": "A.V.", 
        "id": "sg:person.016017316223.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017316223.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01197757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024709281", 
          "https://doi.org/10.1007/bf01197757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s000300050012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048836542", 
          "https://doi.org/10.1007/s000300050012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00426995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041500959", 
          "https://doi.org/10.1007/bf00426995"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-06", 
    "datePublishedReg": "2004-06-01", 
    "description": "In this paper we consider parametric oscillations of flexible plates within the model of von K\u00e1rm\u00e1n equations. First we propose the general iterational method to find solutions to even more general problem governed by the von K\u00e1rm\u00e1n\u2013Vlasov\u2013Mushtari equations. In the language of physics the found solutions define stress\u2013strain state of flexible shallow shell with a bounded convex space \u03a9\u03b5R2 and with sufficiently smooth boundary \u0393. The new variational formulation of the problem has been proposed and his validity and application has been discussed using precise mathematical treatment. Then, using the earlier introduced theoretical results, an effective algorithm has been applied to convert problem of finding solutions to hybrid type partial differential equations of von K\u00e1rm\u00e1n form to that of the ordinary differential (ODEs) and algebraic (AEs) equations. Mechanisms of transition to chaos of deterministic systems with infinite number of degrees of freedom are presented. Comparison of mechanisms of transition to chaos with known ones is performed. The following cases of longitudinal loads of different sign are investigated: parametric load acting along X direction only, and parametric load acting in both directions X and Y with the same amplitude and frequency.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/b:mecc.0000022845.52667.b0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1030472", 
        "issn": [
          "0025-6455", 
          "1572-9648"
        ], 
        "name": "Meccanica", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "keywords": [
      "ordinary differential", 
      "type partial differential equations", 
      "parametric load", 
      "partial differential equations", 
      "flexible shallow shells", 
      "von K\u00e1rm\u00e1n form", 
      "von K\u00e1rm\u00e1n equations", 
      "precise mathematical treatment", 
      "language of physics", 
      "flexible rectangular plate", 
      "new variational formulation", 
      "algebraic equations", 
      "differential equations", 
      "deterministic system", 
      "K\u00e1rm\u00e1n equations", 
      "mathematical treatment", 
      "variational formulation", 
      "iterational method", 
      "infinite number", 
      "equations", 
      "theoretical results", 
      "parametric vibration", 
      "effective algorithm", 
      "flexible plate", 
      "direction x", 
      "general problem", 
      "shallow shells", 
      "rectangular plates", 
      "problem", 
      "stress-strain state", 
      "solution", 
      "chaos", 
      "parametric oscillation", 
      "algorithm", 
      "physics", 
      "formulation", 
      "oscillations", 
      "mechanism of transition", 
      "freedom", 
      "different signs", 
      "model", 
      "differential", 
      "applications", 
      "vibration", 
      "validity", 
      "system", 
      "load", 
      "same amplitude", 
      "longitudinal load", 
      "one", 
      "form", 
      "number", 
      "cases", 
      "results", 
      "plate", 
      "amplitude", 
      "state", 
      "direction", 
      "comparison", 
      "transition", 
      "degree", 
      "comparison of mechanisms", 
      "frequency", 
      "shell", 
      "language", 
      "mechanism", 
      "signs", 
      "treatment", 
      "paper", 
      "method", 
      "general iterational method", 
      "von K\u00e1rm\u00e1n\u2013Vlasov", 
      "K\u00e1rm\u00e1n\u2013Vlasov", 
      "Mushtari equations", 
      "convex space \u03a9\u03b5R2", 
      "space \u03a9\u03b5R2", 
      "\u03a9\u03b5R2", 
      "hybrid type partial differential equations", 
      "K\u00e1rm\u00e1n form", 
      "Complex Parametric Vibrations"
    ], 
    "name": "Complex Parametric Vibrations of Flexible Rectangular Plates", 
    "pagination": "221-244", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047600651"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/b:mecc.0000022845.52667.b0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/b:mecc.0000022845.52667.b0", 
      "https://app.dimensions.ai/details/publication/pub.1047600651"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_387.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/b:mecc.0000022845.52667.b0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:mecc.0000022845.52667.b0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:mecc.0000022845.52667.b0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:mecc.0000022845.52667.b0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:mecc.0000022845.52667.b0'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      22 PREDICATES      109 URIs      98 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/b:mecc.0000022845.52667.b0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N78a9c1602c154365a841e6da0ab4af8b
4 schema:citation sg:pub.10.1007/bf00426995
5 sg:pub.10.1007/bf01197757
6 sg:pub.10.1007/s000300050012
7 schema:datePublished 2004-06
8 schema:datePublishedReg 2004-06-01
9 schema:description In this paper we consider parametric oscillations of flexible plates within the model of von Kármán equations. First we propose the general iterational method to find solutions to even more general problem governed by the von Kármán–Vlasov–Mushtari equations. In the language of physics the found solutions define stress–strain state of flexible shallow shell with a bounded convex space ΩεR2 and with sufficiently smooth boundary Γ. The new variational formulation of the problem has been proposed and his validity and application has been discussed using precise mathematical treatment. Then, using the earlier introduced theoretical results, an effective algorithm has been applied to convert problem of finding solutions to hybrid type partial differential equations of von Kármán form to that of the ordinary differential (ODEs) and algebraic (AEs) equations. Mechanisms of transition to chaos of deterministic systems with infinite number of degrees of freedom are presented. Comparison of mechanisms of transition to chaos with known ones is performed. The following cases of longitudinal loads of different sign are investigated: parametric load acting along X direction only, and parametric load acting in both directions X and Y with the same amplitude and frequency.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Nae864f48f7f04f7490b9fd398c032c99
14 Nf9d1c5075f384111ae952bf02a0ec94e
15 sg:journal.1030472
16 schema:keywords Complex Parametric Vibrations
17 Kármán equations
18 Kármán form
19 Kármán–Vlasov
20 Mushtari equations
21 algebraic equations
22 algorithm
23 amplitude
24 applications
25 cases
26 chaos
27 comparison
28 comparison of mechanisms
29 convex space ΩεR2
30 degree
31 deterministic system
32 different signs
33 differential
34 differential equations
35 direction
36 direction x
37 effective algorithm
38 equations
39 flexible plate
40 flexible rectangular plate
41 flexible shallow shells
42 form
43 formulation
44 freedom
45 frequency
46 general iterational method
47 general problem
48 hybrid type partial differential equations
49 infinite number
50 iterational method
51 language
52 language of physics
53 load
54 longitudinal load
55 mathematical treatment
56 mechanism
57 mechanism of transition
58 method
59 model
60 new variational formulation
61 number
62 one
63 ordinary differential
64 oscillations
65 paper
66 parametric load
67 parametric oscillation
68 parametric vibration
69 partial differential equations
70 physics
71 plate
72 precise mathematical treatment
73 problem
74 rectangular plates
75 results
76 same amplitude
77 shallow shells
78 shell
79 signs
80 solution
81 space ΩεR2
82 state
83 stress-strain state
84 system
85 theoretical results
86 transition
87 treatment
88 type partial differential equations
89 validity
90 variational formulation
91 vibration
92 von Kármán equations
93 von Kármán form
94 von Kármán–Vlasov
95 ΩεR2
96 schema:name Complex Parametric Vibrations of Flexible Rectangular Plates
97 schema:pagination 221-244
98 schema:productId Nbb4922cc93f14adb89653f2cc9d1b8a4
99 Nc7084f1b763f433d9667c641dc62473e
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047600651
101 https://doi.org/10.1023/b:mecc.0000022845.52667.b0
102 schema:sdDatePublished 2021-11-01T18:07
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher N68efc15912c644f6afefa6a1d307b1ef
105 schema:url https://doi.org/10.1023/b:mecc.0000022845.52667.b0
106 sgo:license sg:explorer/license/
107 sgo:sdDataset articles
108 rdf:type schema:ScholarlyArticle
109 N3c6bdd7e8fbd4f19a53611f1e5edf1b4 rdf:first sg:person.016017316223.58
110 rdf:rest rdf:nil
111 N3d671739f7914187911d66114b5a11f5 rdf:first sg:person.015167266033.92
112 rdf:rest N3c6bdd7e8fbd4f19a53611f1e5edf1b4
113 N68efc15912c644f6afefa6a1d307b1ef schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 N78a9c1602c154365a841e6da0ab4af8b rdf:first sg:person.012103132446.89
116 rdf:rest N3d671739f7914187911d66114b5a11f5
117 Nae864f48f7f04f7490b9fd398c032c99 schema:volumeNumber 39
118 rdf:type schema:PublicationVolume
119 Nbb4922cc93f14adb89653f2cc9d1b8a4 schema:name doi
120 schema:value 10.1023/b:mecc.0000022845.52667.b0
121 rdf:type schema:PropertyValue
122 Nc7084f1b763f433d9667c641dc62473e schema:name dimensions_id
123 schema:value pub.1047600651
124 rdf:type schema:PropertyValue
125 Nf9d1c5075f384111ae952bf02a0ec94e schema:issueNumber 3
126 rdf:type schema:PublicationIssue
127 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
128 schema:name Mathematical Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
131 schema:name Pure Mathematics
132 rdf:type schema:DefinedTerm
133 sg:journal.1030472 schema:issn 0025-6455
134 1572-9648
135 schema:name Meccanica
136 schema:publisher Springer Nature
137 rdf:type schema:Periodical
138 sg:person.012103132446.89 schema:affiliation grid-institutes:grid.412284.9
139 schema:familyName Awrejcewicz
140 schema:givenName J.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89
142 rdf:type schema:Person
143 sg:person.015167266033.92 schema:affiliation grid-institutes:grid.446088.6
144 schema:familyName Krysko
145 schema:givenName V.A.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92
147 rdf:type schema:Person
148 sg:person.016017316223.58 schema:affiliation grid-institutes:grid.446088.6
149 schema:familyName Krysko
150 schema:givenName A.V.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017316223.58
152 rdf:type schema:Person
153 sg:pub.10.1007/bf00426995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041500959
154 https://doi.org/10.1007/bf00426995
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/bf01197757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024709281
157 https://doi.org/10.1007/bf01197757
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s000300050012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048836542
160 https://doi.org/10.1007/s000300050012
161 rdf:type schema:CreativeWork
162 grid-institutes:grid.412284.9 schema:alternateName Department of Automatics and Biomechanics, Technical University of Lodz, 1/15 Stefanowski St., 90-924, Lodz, Poland
163 schema:name Department of Automatics and Biomechanics, Technical University of Lodz, 1/15 Stefanowski St., 90-924, Lodz, Poland
164 rdf:type schema:Organization
165 grid-institutes:grid.446088.6 schema:alternateName Department of Mathematics, Saratov State University, B. Sadovaya 96a, 410054, Saratov, Russia
166 schema:name Department of Mathematics, Saratov State University, B. Sadovaya 96a, 410054, Saratov, Russia
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...