Wavelets and the Generalization of the Variogram View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-02

AUTHORS

E. H. Bosch, M. A. Oliver, R. Webster

ABSTRACT

The experimental variogram computed in the usual way by the method of moments and the Haar wavelet transform are similar in that they filter data and yield informative summaries that may be interpreted. The variogram filters out constant values; wavelets can filter variation at several spatial scales and thereby provide a richer repertoire for analysis and demand no assumptions other than that of finite variance. This paper compares the two functions, identifying that part of the Haar wavelet transform that gives it its advantages. It goes on to show that the generalized variogram of order k=1, 2, and 3 filters linear, quadratic, and cubic polynomials from the data, respectively, which correspond with more complex wavelets in Daubechies's family. The additional filter coefficients of the latter can reveal features of the data that are not evident in its usual form. Three examples in which data recorded at regular intervals on transects are analyzed illustrate the extended form of the variogram. The apparent periodicity of gilgais in Australia seems to be accentuated as filter coefficients are added, but otherwise the analysis provides no new insight. Analysis of hyerpsectral data with a strong linear trend showed that the wavelet-based variograms filtered it out. Adding filter coefficients in the analysis of the topsoil across the Jurassic scarplands of England changed the upper bound of the variogram; it then resembled the within-class variogram computed by the method of moments. To elucidate these results, we simulated several series of data to represent a random process with values fluctuating about a mean, data with long-range linear trend, data with local trend, and data with stepped transitions. The results suggest that the wavelet variogram can filter out the effects of long-range trend, but not local trend, and of transitions from one class to another, as across boundaries. More... »

PAGES

147-186

References to SciGraph publications

  • 1973-03. Automatic soil-boundary location from transect data in MATHEMATICAL GEOSCIENCES
  • 1910-09. Zur Theorie der orthogonalen Funktionensysteme in MATHEMATISCHE ANNALEN
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/b:matg.0000020469.51320.5d

    DOI

    http://dx.doi.org/10.1023/b:matg.0000020469.51320.5d

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012102071


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "USACE-ERDC-TEC, 7701 Telegraph Road, 22315-3864, Alexandria, Virginia, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bosch", 
            "givenName": "E. H.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Reading", 
              "id": "https://www.grid.ac/institutes/grid.9435.b", 
              "name": [
                "Department of Soil Science, The University of Reading, P.O. Box 233, RG6 6DW, Reading, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oliver", 
            "givenName": "M. A.", 
            "id": "sg:person.010076772773.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010076772773.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rothamsted Research", 
              "id": "https://www.grid.ac/institutes/grid.418374.d", 
              "name": [
                "Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Webster", 
            "givenName": "R.", 
            "id": "sg:person.01175533525.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175533525.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1071/sr9770191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000073123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2389.1984.tb00621.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004052498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2389.1980.tb02100.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006529281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02114085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012409705", 
              "https://doi.org/10.1007/bf02114085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02114085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012409705", 
              "https://doi.org/10.1007/bf02114085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01456326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015897127", 
              "https://doi.org/10.1007/bf01456326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01456326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015897127", 
              "https://doi.org/10.1007/bf01456326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2389.1987.tb02146.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022690023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s002185960000160x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023619437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s002185960000160x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023619437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-2389.2001.00420.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026384655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/esp.3290110110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027385483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2389.1978.tb00789.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028953043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-2389.1999.t01-1-00234.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032552140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2389.1975.tb01942.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046544397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160410705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050310035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160410705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050310035"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-02", 
        "datePublishedReg": "2004-02-01", 
        "description": "The experimental variogram computed in the usual way by the method of moments and the Haar wavelet transform are similar in that they filter data and yield informative summaries that may be interpreted. The variogram filters out constant values; wavelets can filter variation at several spatial scales and thereby provide a richer repertoire for analysis and demand no assumptions other than that of finite variance. This paper compares the two functions, identifying that part of the Haar wavelet transform that gives it its advantages. It goes on to show that the generalized variogram of order k=1, 2, and 3 filters linear, quadratic, and cubic polynomials from the data, respectively, which correspond with more complex wavelets in Daubechies's family. The additional filter coefficients of the latter can reveal features of the data that are not evident in its usual form. Three examples in which data recorded at regular intervals on transects are analyzed illustrate the extended form of the variogram. The apparent periodicity of gilgais in Australia seems to be accentuated as filter coefficients are added, but otherwise the analysis provides no new insight. Analysis of hyerpsectral data with a strong linear trend showed that the wavelet-based variograms filtered it out. Adding filter coefficients in the analysis of the topsoil across the Jurassic scarplands of England changed the upper bound of the variogram; it then resembled the within-class variogram computed by the method of moments. To elucidate these results, we simulated several series of data to represent a random process with values fluctuating about a mean, data with long-range linear trend, data with local trend, and data with stepped transitions. The results suggest that the wavelet variogram can filter out the effects of long-range trend, but not local trend, and of transitions from one class to another, as across boundaries.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/b:matg.0000020469.51320.5d", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1039818", 
            "issn": [
              "1874-8961", 
              "1874-8953"
            ], 
            "name": "Mathematical Geosciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "36"
          }
        ], 
        "name": "Wavelets and the Generalization of the Variogram", 
        "pagination": "147-186", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "39a8ab509f60ba712aaf4fd0e42943018f6f1d4c6f0d810d9e5996097f27e391"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/b:matg.0000020469.51320.5d"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012102071"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/b:matg.0000020469.51320.5d", 
          "https://app.dimensions.ai/details/publication/pub.1012102071"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000504.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023%2FB%3AMATG.0000020469.51320.5d"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:matg.0000020469.51320.5d'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:matg.0000020469.51320.5d'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:matg.0000020469.51320.5d'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:matg.0000020469.51320.5d'


     

    This table displays all metadata directly associated to this object as RDF triples.

    120 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/b:matg.0000020469.51320.5d schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N4a579af2cd2d480186d7e75460256d75
    4 schema:citation sg:pub.10.1007/bf01456326
    5 sg:pub.10.1007/bf02114085
    6 https://doi.org/10.1002/cpa.3160410705
    7 https://doi.org/10.1002/esp.3290110110
    8 https://doi.org/10.1017/s002185960000160x
    9 https://doi.org/10.1046/j.1365-2389.1999.t01-1-00234.x
    10 https://doi.org/10.1046/j.1365-2389.2001.00420.x
    11 https://doi.org/10.1071/sr9770191
    12 https://doi.org/10.1111/j.1365-2389.1975.tb01942.x
    13 https://doi.org/10.1111/j.1365-2389.1978.tb00789.x
    14 https://doi.org/10.1111/j.1365-2389.1980.tb02100.x
    15 https://doi.org/10.1111/j.1365-2389.1984.tb00621.x
    16 https://doi.org/10.1111/j.1365-2389.1987.tb02146.x
    17 schema:datePublished 2004-02
    18 schema:datePublishedReg 2004-02-01
    19 schema:description The experimental variogram computed in the usual way by the method of moments and the Haar wavelet transform are similar in that they filter data and yield informative summaries that may be interpreted. The variogram filters out constant values; wavelets can filter variation at several spatial scales and thereby provide a richer repertoire for analysis and demand no assumptions other than that of finite variance. This paper compares the two functions, identifying that part of the Haar wavelet transform that gives it its advantages. It goes on to show that the generalized variogram of order k=1, 2, and 3 filters linear, quadratic, and cubic polynomials from the data, respectively, which correspond with more complex wavelets in Daubechies's family. The additional filter coefficients of the latter can reveal features of the data that are not evident in its usual form. Three examples in which data recorded at regular intervals on transects are analyzed illustrate the extended form of the variogram. The apparent periodicity of gilgais in Australia seems to be accentuated as filter coefficients are added, but otherwise the analysis provides no new insight. Analysis of hyerpsectral data with a strong linear trend showed that the wavelet-based variograms filtered it out. Adding filter coefficients in the analysis of the topsoil across the Jurassic scarplands of England changed the upper bound of the variogram; it then resembled the within-class variogram computed by the method of moments. To elucidate these results, we simulated several series of data to represent a random process with values fluctuating about a mean, data with long-range linear trend, data with local trend, and data with stepped transitions. The results suggest that the wavelet variogram can filter out the effects of long-range trend, but not local trend, and of transitions from one class to another, as across boundaries.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N096d0538c6f4417b9caca31c026d6c98
    24 N112c463be88547e1a4155b7684752b07
    25 sg:journal.1039818
    26 schema:name Wavelets and the Generalization of the Variogram
    27 schema:pagination 147-186
    28 schema:productId N04ff88d90e2f4d3a9775253fdd773d83
    29 N5d186c33af534ab591d2bed51c69311c
    30 Nfd4d1a7aa8a8465b80b8a27ac10e669e
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012102071
    32 https://doi.org/10.1023/b:matg.0000020469.51320.5d
    33 schema:sdDatePublished 2019-04-10T15:49
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N123dd717dd03460b899ea96d6e9416f9
    36 schema:url http://link.springer.com/10.1023%2FB%3AMATG.0000020469.51320.5d
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N04ff88d90e2f4d3a9775253fdd773d83 schema:name dimensions_id
    41 schema:value pub.1012102071
    42 rdf:type schema:PropertyValue
    43 N096d0538c6f4417b9caca31c026d6c98 schema:issueNumber 2
    44 rdf:type schema:PublicationIssue
    45 N0d0bf637adc94164816107e57f6cbe9f rdf:first sg:person.010076772773.20
    46 rdf:rest Nc3f7fc148f464ae1bf4b240ef4d77405
    47 N112c463be88547e1a4155b7684752b07 schema:volumeNumber 36
    48 rdf:type schema:PublicationVolume
    49 N123dd717dd03460b899ea96d6e9416f9 schema:name Springer Nature - SN SciGraph project
    50 rdf:type schema:Organization
    51 N497254245cda48d7bd84c7ac5bc65cde schema:affiliation Nb9777ed012e74dbdaeb894fa87041229
    52 schema:familyName Bosch
    53 schema:givenName E. H.
    54 rdf:type schema:Person
    55 N4a579af2cd2d480186d7e75460256d75 rdf:first N497254245cda48d7bd84c7ac5bc65cde
    56 rdf:rest N0d0bf637adc94164816107e57f6cbe9f
    57 N5d186c33af534ab591d2bed51c69311c schema:name doi
    58 schema:value 10.1023/b:matg.0000020469.51320.5d
    59 rdf:type schema:PropertyValue
    60 Nb9777ed012e74dbdaeb894fa87041229 schema:name USACE-ERDC-TEC, 7701 Telegraph Road, 22315-3864, Alexandria, Virginia, USA
    61 rdf:type schema:Organization
    62 Nc3f7fc148f464ae1bf4b240ef4d77405 rdf:first sg:person.01175533525.40
    63 rdf:rest rdf:nil
    64 Nfd4d1a7aa8a8465b80b8a27ac10e669e schema:name readcube_id
    65 schema:value 39a8ab509f60ba712aaf4fd0e42943018f6f1d4c6f0d810d9e5996097f27e391
    66 rdf:type schema:PropertyValue
    67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Information and Computing Sciences
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Information Systems
    72 rdf:type schema:DefinedTerm
    73 sg:journal.1039818 schema:issn 1874-8953
    74 1874-8961
    75 schema:name Mathematical Geosciences
    76 rdf:type schema:Periodical
    77 sg:person.010076772773.20 schema:affiliation https://www.grid.ac/institutes/grid.9435.b
    78 schema:familyName Oliver
    79 schema:givenName M. A.
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010076772773.20
    81 rdf:type schema:Person
    82 sg:person.01175533525.40 schema:affiliation https://www.grid.ac/institutes/grid.418374.d
    83 schema:familyName Webster
    84 schema:givenName R.
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175533525.40
    86 rdf:type schema:Person
    87 sg:pub.10.1007/bf01456326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015897127
    88 https://doi.org/10.1007/bf01456326
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/bf02114085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012409705
    91 https://doi.org/10.1007/bf02114085
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1002/cpa.3160410705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050310035
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1002/esp.3290110110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027385483
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1017/s002185960000160x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023619437
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1046/j.1365-2389.1999.t01-1-00234.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032552140
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1046/j.1365-2389.2001.00420.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026384655
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1071/sr9770191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000073123
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1111/j.1365-2389.1975.tb01942.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046544397
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1111/j.1365-2389.1978.tb00789.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028953043
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1111/j.1365-2389.1980.tb02100.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006529281
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1111/j.1365-2389.1984.tb00621.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004052498
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1111/j.1365-2389.1987.tb02146.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022690023
    114 rdf:type schema:CreativeWork
    115 https://www.grid.ac/institutes/grid.418374.d schema:alternateName Rothamsted Research
    116 schema:name Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
    117 rdf:type schema:Organization
    118 https://www.grid.ac/institutes/grid.9435.b schema:alternateName University of Reading
    119 schema:name Department of Soil Science, The University of Reading, P.O. Box 233, RG6 6DW, Reading, United Kingdom
    120 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...