Spatial Connectivity: From Variograms to Multiple-Point Measures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-11

AUTHORS

Sunderrajan Krishnan, A. G. Journel

ABSTRACT

Anisotropy and curvilinearity are common characteristics of geological structures. Traditional measures of connectivity such as the variogram are rectilinear in that they do not take into account the curvilinearity of these structures. Recent developments in geostatistics have demonstrated and simulated the effect of curvilinearity and multiple-point (mp) connectivity on the output of transfer functions such as flow simulators. A set of curvilinear channels and set of elliptical lenses may share the same variogram and rectilinear connectivity but would yield different flow responses because of their different curvilinearity. A measure of curvilinearity generalizing the variogram measure is therefore proposed. The proposed measure is directional with a tolerance cone and depends on distance with a tolerance, as with an experimental variogram. More... »

PAGES

915-925

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/b:matg.0000011585.73414.35

DOI

http://dx.doi.org/10.1023/b:matg.0000011585.73414.35

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044802302


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Geology and Environmental Science, 94305, Stanford, California"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krishnan", 
        "givenName": "Sunderrajan", 
        "id": "sg:person.015521365106.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015521365106.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Geology and Environmental Science, 94305, Stanford, California"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Journel", 
        "givenName": "A. G.", 
        "id": "sg:person.013166227535.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166227535.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/98wr01861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009444202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1014009426274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022589901", 
          "https://doi.org/10.1023/a:1014009426274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1999wr900170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032517309"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-11", 
    "datePublishedReg": "2003-11-01", 
    "description": "Anisotropy and curvilinearity are common characteristics of geological structures. Traditional measures of connectivity such as the variogram are rectilinear in that they do not take into account the curvilinearity of these structures. Recent developments in geostatistics have demonstrated and simulated the effect of curvilinearity and multiple-point (mp) connectivity on the output of transfer functions such as flow simulators. A set of curvilinear channels and set of elliptical lenses may share the same variogram and rectilinear connectivity but would yield different flow responses because of their different curvilinearity. A measure of curvilinearity generalizing the variogram measure is therefore proposed. The proposed measure is directional with a tolerance cone and depends on distance with a tolerance, as with an experimental variogram.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/b:matg.0000011585.73414.35", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1039818", 
        "issn": [
          "1874-8961", 
          "1874-8953"
        ], 
        "name": "Mathematical Geosciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "Spatial Connectivity: From Variograms to Multiple-Point Measures", 
    "pagination": "915-925", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d5688d61f3d8101da18c307b60286f441f78ab78a8188bc255d8e29ebc51f97e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/b:matg.0000011585.73414.35"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044802302"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/b:matg.0000011585.73414.35", 
      "https://app.dimensions.ai/details/publication/pub.1044802302"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FB%3AMATG.0000011585.73414.35"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:matg.0000011585.73414.35'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:matg.0000011585.73414.35'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:matg.0000011585.73414.35'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:matg.0000011585.73414.35'


 

This table displays all metadata directly associated to this object as RDF triples.

79 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/b:matg.0000011585.73414.35 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N9fb8925963924bba937a162422be84ff
4 schema:citation sg:pub.10.1023/a:1014009426274
5 https://doi.org/10.1029/1999wr900170
6 https://doi.org/10.1029/98wr01861
7 schema:datePublished 2003-11
8 schema:datePublishedReg 2003-11-01
9 schema:description Anisotropy and curvilinearity are common characteristics of geological structures. Traditional measures of connectivity such as the variogram are rectilinear in that they do not take into account the curvilinearity of these structures. Recent developments in geostatistics have demonstrated and simulated the effect of curvilinearity and multiple-point (mp) connectivity on the output of transfer functions such as flow simulators. A set of curvilinear channels and set of elliptical lenses may share the same variogram and rectilinear connectivity but would yield different flow responses because of their different curvilinearity. A measure of curvilinearity generalizing the variogram measure is therefore proposed. The proposed measure is directional with a tolerance cone and depends on distance with a tolerance, as with an experimental variogram.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N291c751c1017457f9a2ac2ae3d8ca3ae
14 Nd65e120bb8e24d20971852dc0460209c
15 sg:journal.1039818
16 schema:name Spatial Connectivity: From Variograms to Multiple-Point Measures
17 schema:pagination 915-925
18 schema:productId Nb2fb1c562986463ea828afb063687c9d
19 Nd9d3b443a0e449a1a16cf9ff484e6a51
20 Ne63dfe84c50e476582989f1f66149acd
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044802302
22 https://doi.org/10.1023/b:matg.0000011585.73414.35
23 schema:sdDatePublished 2019-04-11T00:14
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher Nfc331050151d4f78bebeada9f80a99c1
26 schema:url http://link.springer.com/10.1023%2FB%3AMATG.0000011585.73414.35
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N291c751c1017457f9a2ac2ae3d8ca3ae schema:volumeNumber 35
31 rdf:type schema:PublicationVolume
32 N7b9ab9b9a7c842d0adc84af4ca567164 schema:name Department of Geology and Environmental Science, 94305, Stanford, California
33 rdf:type schema:Organization
34 N90cd5b45d4e44bcf9eac470229bbcc59 schema:name Department of Geology and Environmental Science, 94305, Stanford, California
35 rdf:type schema:Organization
36 N9fb8925963924bba937a162422be84ff rdf:first sg:person.015521365106.38
37 rdf:rest Ncd5e2dffdb5f43d6b7583b5b703f0877
38 Nb2fb1c562986463ea828afb063687c9d schema:name readcube_id
39 schema:value d5688d61f3d8101da18c307b60286f441f78ab78a8188bc255d8e29ebc51f97e
40 rdf:type schema:PropertyValue
41 Ncd5e2dffdb5f43d6b7583b5b703f0877 rdf:first sg:person.013166227535.29
42 rdf:rest rdf:nil
43 Nd65e120bb8e24d20971852dc0460209c schema:issueNumber 8
44 rdf:type schema:PublicationIssue
45 Nd9d3b443a0e449a1a16cf9ff484e6a51 schema:name doi
46 schema:value 10.1023/b:matg.0000011585.73414.35
47 rdf:type schema:PropertyValue
48 Ne63dfe84c50e476582989f1f66149acd schema:name dimensions_id
49 schema:value pub.1044802302
50 rdf:type schema:PropertyValue
51 Nfc331050151d4f78bebeada9f80a99c1 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
54 schema:name Engineering
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
57 schema:name Interdisciplinary Engineering
58 rdf:type schema:DefinedTerm
59 sg:journal.1039818 schema:issn 1874-8953
60 1874-8961
61 schema:name Mathematical Geosciences
62 rdf:type schema:Periodical
63 sg:person.013166227535.29 schema:affiliation N7b9ab9b9a7c842d0adc84af4ca567164
64 schema:familyName Journel
65 schema:givenName A. G.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166227535.29
67 rdf:type schema:Person
68 sg:person.015521365106.38 schema:affiliation N90cd5b45d4e44bcf9eac470229bbcc59
69 schema:familyName Krishnan
70 schema:givenName Sunderrajan
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015521365106.38
72 rdf:type schema:Person
73 sg:pub.10.1023/a:1014009426274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022589901
74 https://doi.org/10.1023/a:1014009426274
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1029/1999wr900170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032517309
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1029/98wr01861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009444202
79 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...