Support Vector Data Description View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-01

AUTHORS

David M.J. Tax, Robert P.W. Duin

ABSTRACT

Data domain description concerns the characterization of a data set. A good description covers all target data but includes no superfluous space. The boundary of a dataset can be used to detect novel data or outliers. We will present the Support Vector Data Description (SVDD) which is inspired by the Support Vector Classifier. It obtains a spherically shaped boundary around a dataset and analogous to the Support Vector Classifier it can be made flexible by using other kernel functions. The method is made robust against outliers in the training set and is capable of tightening the description by using negative examples. We show characteristics of the Support Vector Data Descriptions using artificial and real data. More... »

PAGES

45-66

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/b:mach.0000008084.60811.49

DOI

http://dx.doi.org/10.1023/b:mach.0000008084.60811.49

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023309467


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Pattern Recognition Group, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628, CJ Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tax", 
        "givenName": "David M.J.", 
        "id": "sg:person.010366324047.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010366324047.69"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Duin", 
        "givenName": "Robert P.W.", 
        "id": "sg:person.013013650037.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013013650037.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0167-8655(99)00087-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004237062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(65)90150-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006271376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(95)00120-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014860265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(98)00032-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021275024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0001-2998(78)80014-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035405952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1991.3.4.461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037280379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976601750264965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038617092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1996.8.2.260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042064636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(96)00142-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044522995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8655(97)00049-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048297948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(95)00049-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051037139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-vis:19941330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056860343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2995737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057891654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.1976.1674577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061531591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2000.906164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094808156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/cp:19950597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098685842"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-01", 
    "datePublishedReg": "2004-01-01", 
    "description": "Data domain description concerns the characterization of a data set. A good description covers all target data but includes no superfluous space. The boundary of a dataset can be used to detect novel data or outliers. We will present the Support Vector Data Description (SVDD) which is inspired by the Support Vector Classifier. It obtains a spherically shaped boundary around a dataset and analogous to the Support Vector Classifier it can be made flexible by using other kernel functions. The method is made robust against outliers in the training set and is capable of tightening the description by using negative examples. We show characteristics of the Support Vector Data Descriptions using artificial and real data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/b:mach.0000008084.60811.49", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1125588", 
        "issn": [
          "0885-6125", 
          "1573-0565"
        ], 
        "name": "Machine Learning", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "name": "Support Vector Data Description", 
    "pagination": "45-66", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6f0d4278fcf7259725b48a6c341ffb9c1507591a570fad6f84e732e4a0367404"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/b:mach.0000008084.60811.49"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023309467"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/b:mach.0000008084.60811.49", 
      "https://app.dimensions.ai/details/publication/pub.1023309467"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FB%3AMACH.0000008084.60811.49"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:mach.0000008084.60811.49'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:mach.0000008084.60811.49'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:mach.0000008084.60811.49'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:mach.0000008084.60811.49'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/b:mach.0000008084.60811.49 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N85398e51c60c465fa6d339657905a1ae
4 schema:citation https://doi.org/10.1016/0022-247x(65)90150-2
5 https://doi.org/10.1016/0893-6080(95)00049-6
6 https://doi.org/10.1016/0893-6080(95)00120-4
7 https://doi.org/10.1016/s0001-2998(78)80014-2
8 https://doi.org/10.1016/s0031-3203(96)00142-2
9 https://doi.org/10.1016/s0167-8655(97)00049-4
10 https://doi.org/10.1016/s0167-8655(99)00087-2
11 https://doi.org/10.1016/s0893-6080(98)00032-x
12 https://doi.org/10.1049/cp:19950597
13 https://doi.org/10.1049/ip-vis:19941330
14 https://doi.org/10.1063/1.2995737
15 https://doi.org/10.1109/icpr.2000.906164
16 https://doi.org/10.1109/tc.1976.1674577
17 https://doi.org/10.1162/089976601750264965
18 https://doi.org/10.1162/neco.1991.3.4.461
19 https://doi.org/10.1162/neco.1996.8.2.260
20 schema:datePublished 2004-01
21 schema:datePublishedReg 2004-01-01
22 schema:description Data domain description concerns the characterization of a data set. A good description covers all target data but includes no superfluous space. The boundary of a dataset can be used to detect novel data or outliers. We will present the Support Vector Data Description (SVDD) which is inspired by the Support Vector Classifier. It obtains a spherically shaped boundary around a dataset and analogous to the Support Vector Classifier it can be made flexible by using other kernel functions. The method is made robust against outliers in the training set and is capable of tightening the description by using negative examples. We show characteristics of the Support Vector Data Descriptions using artificial and real data.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N2ab99d97838d47c885816f2f6d92c8de
27 Nee8793a664e9410bbf68df27b7ad3981
28 sg:journal.1125588
29 schema:name Support Vector Data Description
30 schema:pagination 45-66
31 schema:productId N0fa02b78505d4a75b9f821366de8e402
32 N4440b81e26b64b708dcac3a31e2b8933
33 Ndc371620cc7b46caa4c710b9d959db00
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023309467
35 https://doi.org/10.1023/b:mach.0000008084.60811.49
36 schema:sdDatePublished 2019-04-10T14:59
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Nde4f4dcb21ed4b1181541431bc643ac1
39 schema:url http://link.springer.com/10.1023%2FB%3AMACH.0000008084.60811.49
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N0fa02b78505d4a75b9f821366de8e402 schema:name readcube_id
44 schema:value 6f0d4278fcf7259725b48a6c341ffb9c1507591a570fad6f84e732e4a0367404
45 rdf:type schema:PropertyValue
46 N2ab99d97838d47c885816f2f6d92c8de schema:issueNumber 1
47 rdf:type schema:PublicationIssue
48 N359cf82051894e8c9037704389e318c5 rdf:first sg:person.013013650037.20
49 rdf:rest rdf:nil
50 N4440b81e26b64b708dcac3a31e2b8933 schema:name doi
51 schema:value 10.1023/b:mach.0000008084.60811.49
52 rdf:type schema:PropertyValue
53 N85398e51c60c465fa6d339657905a1ae rdf:first sg:person.010366324047.69
54 rdf:rest N359cf82051894e8c9037704389e318c5
55 Ndc371620cc7b46caa4c710b9d959db00 schema:name dimensions_id
56 schema:value pub.1023309467
57 rdf:type schema:PropertyValue
58 Nde4f4dcb21ed4b1181541431bc643ac1 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nee8793a664e9410bbf68df27b7ad3981 schema:volumeNumber 54
61 rdf:type schema:PublicationVolume
62 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
63 schema:name Information and Computing Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
66 schema:name Artificial Intelligence and Image Processing
67 rdf:type schema:DefinedTerm
68 sg:journal.1125588 schema:issn 0885-6125
69 1573-0565
70 schema:name Machine Learning
71 rdf:type schema:Periodical
72 sg:person.010366324047.69 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
73 schema:familyName Tax
74 schema:givenName David M.J.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010366324047.69
76 rdf:type schema:Person
77 sg:person.013013650037.20 schema:familyName Duin
78 schema:givenName Robert P.W.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013013650037.20
80 rdf:type schema:Person
81 https://doi.org/10.1016/0022-247x(65)90150-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006271376
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/0893-6080(95)00049-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051037139
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0893-6080(95)00120-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014860265
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/s0001-2998(78)80014-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035405952
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/s0031-3203(96)00142-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044522995
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/s0167-8655(97)00049-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048297948
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/s0167-8655(99)00087-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004237062
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/s0893-6080(98)00032-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021275024
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1049/cp:19950597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098685842
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1049/ip-vis:19941330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056860343
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1063/1.2995737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057891654
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/icpr.2000.906164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094808156
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/tc.1976.1674577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061531591
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1162/089976601750264965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038617092
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1162/neco.1991.3.4.461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037280379
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1162/neco.1996.8.2.260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042064636
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.5292.c schema:alternateName Delft University of Technology
114 schema:name Pattern Recognition Group, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628, CJ Delft, The Netherlands
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...