A scaleable and integrated crystallization pipeline applied to mining the Thermotoga maritima proteome View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-03

AUTHORS

Michael DiDonato, Ashley M. Deacon, Heath E. Klock, Daniel McMullan, Scott A. Lesley

ABSTRACT

The wealth of genomic data available for many organisms has set the stage for the next phase of structure-function analysis. High-throughput structural genomics is currently the method of choice for rapid analysis of protein structure-function relationships on a proteome-wide basis. The Joint Center for Structural Genomics (JCSG), established in 2000 under the NIH/NIGMS Protein Structure Initiative, has developed and implemented an integrated high-throughput structure pipeline and applied it in a 2-tiered approach to mining the proteome of the thermophilic bacterium Thermotoga maritima. In the first tier, the successful application of this integrated pipeline has resulted in the cloning and expression of 73% of the T. maritima proteome (1376 out of 1877 predicted genes), and has identified 465 proteins which produced crystal hits. These 465 proteins were compared with existing structural information and a subset of 269 targets were selected to process towards structure determination in a second tier effort. To date, the JCSG pipeline applied to the Thermotoga maritima proteome has resulted in 55 new structures and has identified 6 novel folds and continues to identify structures with novel features. More... »

PAGES

133-146

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/b:jsfg.0000029194.04443.50

DOI

http://dx.doi.org/10.1023/b:jsfg.0000029194.04443.50

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011474125

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15263852


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cloning, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crystallization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fermentation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Folding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recombinant Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Robotics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Solubility", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermotoga maritima", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Genomics Institute of the Novartis Research Foundation", 
          "id": "https://www.grid.ac/institutes/grid.418185.1", 
          "name": [
            "The Joint Center for Structural Genomics, USA", 
            "The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, 92121, San Diego, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "DiDonato", 
        "givenName": "Michael", 
        "id": "sg:person.01035160034.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035160034.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "The Joint Center for Structural Genomics, USA", 
            "Stanford Synchrotron Radiation Laboratory, Stanford University, 2575 Sand Hill Road, M599, 94025, Menlo Park, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deacon", 
        "givenName": "Ashley M.", 
        "id": "sg:person.01016272665.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016272665.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomics Institute of the Novartis Research Foundation", 
          "id": "https://www.grid.ac/institutes/grid.418185.1", 
          "name": [
            "The Joint Center for Structural Genomics, USA", 
            "The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, 92121, San Diego, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klock", 
        "givenName": "Heath E.", 
        "id": "sg:person.01357335165.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357335165.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomics Institute of the Novartis Research Foundation", 
          "id": "https://www.grid.ac/institutes/grid.418185.1", 
          "name": [
            "The Joint Center for Structural Genomics, USA", 
            "The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, 92121, San Diego, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McMullan", 
        "givenName": "Daniel", 
        "id": "sg:person.0614735400.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614735400.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomics Institute of the Novartis Research Foundation", 
          "id": "https://www.grid.ac/institutes/grid.418185.1", 
          "name": [
            "The Joint Center for Structural Genomics, USA", 
            "The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, 92121, San Diego, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lesley", 
        "givenName": "Scott A.", 
        "id": "sg:person.01132521265.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132521265.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/prep.2001.1465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002487874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444903007790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007477557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0966-842x(98)01311-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007936367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0723-2020(87)80053-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008035907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1990.tb15454.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011522412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013618994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0909049502015170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022230728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0021889802016709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037044879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0021889802001474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045793097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.142413399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048803315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00409880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049574822", 
          "https://doi.org/10.1007/bf00409880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00409880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049574822", 
          "https://doi.org/10.1007/bf00409880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/20601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050152586", 
          "https://doi.org/10.1038/20601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/20601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050152586", 
          "https://doi.org/10.1038/20601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444902016840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053412303"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-03", 
    "datePublishedReg": "2004-03-01", 
    "description": "The wealth of genomic data available for many organisms has set the stage for the next phase of structure-function analysis. High-throughput structural genomics is currently the method of choice for rapid analysis of protein structure-function relationships on a proteome-wide basis. The Joint Center for Structural Genomics (JCSG), established in 2000 under the NIH/NIGMS Protein Structure Initiative, has developed and implemented an integrated high-throughput structure pipeline and applied it in a 2-tiered approach to mining the proteome of the thermophilic bacterium Thermotoga maritima. In the first tier, the successful application of this integrated pipeline has resulted in the cloning and expression of 73% of the T. maritima proteome (1376 out of 1877 predicted genes), and has identified 465 proteins which produced crystal hits. These 465 proteins were compared with existing structural information and a subset of 269 targets were selected to process towards structure determination in a second tier effort. To date, the JCSG pipeline applied to the Thermotoga maritima proteome has resulted in 55 new structures and has identified 6 novel folds and continues to identify structures with novel features.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/b:jsfg.0000029194.04443.50", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2440509", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1029935", 
        "issn": [
          "1345-711X", 
          "1570-0267"
        ], 
        "name": "Journal of Structural and Functional Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "A scaleable and integrated crystallization pipeline applied to mining the Thermotoga maritima proteome", 
    "pagination": "133-146", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "36aabebba5f4899a6c06ae639667ac1388d07c354748b492afc8d9bdd0d642eb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15263852"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101128185"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/b:jsfg.0000029194.04443.50"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011474125"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/b:jsfg.0000029194.04443.50", 
      "https://app.dimensions.ai/details/publication/pub.1011474125"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FB%3AJSFG.0000029194.04443.50"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:jsfg.0000029194.04443.50'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:jsfg.0000029194.04443.50'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:jsfg.0000029194.04443.50'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:jsfg.0000029194.04443.50'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      55 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/b:jsfg.0000029194.04443.50 schema:about N0f2ccb963d5647cbb2a2f256a4f9a96d
2 N260f21438efc43f484c00125daf9a05e
3 N2fbc1c6493264303b76840ef1aefd588
4 N304f71fe3a8f431396a9146b5b1d41de
5 N3963271e8b664c55829449e909e1a027
6 N3e117d33a7ba4ac1a656ec1d9fc96931
7 N537afd27e4fa4961a9fe315617700552
8 N57075c0d6aa84325bd974eee70787622
9 N7b7fe19bfcd54d058b8c9c9475e698bf
10 N9fb3282f063d46788054fb7adb22bb38
11 Naa71138bf4c34e1d8e45554dbbc9fc32
12 Nbe3f1b11bdf74aeba5d88b091ac53acb
13 Ne65693bfc47e4b8dbb8800f0ae1758ad
14 anzsrc-for:06
15 anzsrc-for:0601
16 schema:author N68f1050db29947d2a732ec869dbfb4e4
17 schema:citation sg:pub.10.1007/bf00409880
18 sg:pub.10.1038/20601
19 https://doi.org/10.1006/prep.2001.1465
20 https://doi.org/10.1016/s0022-2836(05)80360-2
21 https://doi.org/10.1016/s0723-2020(87)80053-x
22 https://doi.org/10.1016/s0966-842x(98)01311-0
23 https://doi.org/10.1073/pnas.142413399
24 https://doi.org/10.1107/s0021889802001474
25 https://doi.org/10.1107/s0021889802016709
26 https://doi.org/10.1107/s0907444902016840
27 https://doi.org/10.1107/s0907444903007790
28 https://doi.org/10.1107/s0909049502015170
29 https://doi.org/10.1111/j.1432-1033.1990.tb15454.x
30 schema:datePublished 2004-03
31 schema:datePublishedReg 2004-03-01
32 schema:description The wealth of genomic data available for many organisms has set the stage for the next phase of structure-function analysis. High-throughput structural genomics is currently the method of choice for rapid analysis of protein structure-function relationships on a proteome-wide basis. The Joint Center for Structural Genomics (JCSG), established in 2000 under the NIH/NIGMS Protein Structure Initiative, has developed and implemented an integrated high-throughput structure pipeline and applied it in a 2-tiered approach to mining the proteome of the thermophilic bacterium Thermotoga maritima. In the first tier, the successful application of this integrated pipeline has resulted in the cloning and expression of 73% of the T. maritima proteome (1376 out of 1877 predicted genes), and has identified 465 proteins which produced crystal hits. These 465 proteins were compared with existing structural information and a subset of 269 targets were selected to process towards structure determination in a second tier effort. To date, the JCSG pipeline applied to the Thermotoga maritima proteome has resulted in 55 new structures and has identified 6 novel folds and continues to identify structures with novel features.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N357d282c2515476993012db37a03ee64
37 N74c684f691c5414c97b2f9c524a8f4d6
38 sg:journal.1029935
39 schema:name A scaleable and integrated crystallization pipeline applied to mining the Thermotoga maritima proteome
40 schema:pagination 133-146
41 schema:productId N5b4544e677c94bb3bc5582a3e03237ca
42 N7ad6e9316314420a88fe0033866001de
43 N9f37032af5e345aeba0be970c38db44f
44 Nc451076f3d704c78be49b593e3c3a613
45 Nc7dded9bdd544c63a991a7a5d5bc257d
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011474125
47 https://doi.org/10.1023/b:jsfg.0000029194.04443.50
48 schema:sdDatePublished 2019-04-10T15:49
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Na04c605d43fa4df2979acc02829632e7
51 schema:url http://link.springer.com/10.1023%2FB%3AJSFG.0000029194.04443.50
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N084766ebd2a24b919c2025e13731cd62 rdf:first sg:person.01016272665.79
56 rdf:rest N395d9e0a397e4efaac698a54e61f8d4a
57 N0f2ccb963d5647cbb2a2f256a4f9a96d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Solubility
59 rdf:type schema:DefinedTerm
60 N260f21438efc43f484c00125daf9a05e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Robotics
62 rdf:type schema:DefinedTerm
63 N2fbc1c6493264303b76840ef1aefd588 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Proteome
65 rdf:type schema:DefinedTerm
66 N304f71fe3a8f431396a9146b5b1d41de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Cloning, Molecular
68 rdf:type schema:DefinedTerm
69 N357d282c2515476993012db37a03ee64 schema:volumeNumber 5
70 rdf:type schema:PublicationVolume
71 N395d9e0a397e4efaac698a54e61f8d4a rdf:first sg:person.01357335165.07
72 rdf:rest N3e53bd8bf4eb4969b370732b7d759f91
73 N3963271e8b664c55829449e909e1a027 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Fermentation
75 rdf:type schema:DefinedTerm
76 N3e117d33a7ba4ac1a656ec1d9fc96931 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Crystallization
78 rdf:type schema:DefinedTerm
79 N3e53bd8bf4eb4969b370732b7d759f91 rdf:first sg:person.0614735400.29
80 rdf:rest N9257a67325b04e08828f31ff60dc05b8
81 N537afd27e4fa4961a9fe315617700552 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Bacterial Proteins
83 rdf:type schema:DefinedTerm
84 N57075c0d6aa84325bd974eee70787622 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Genome, Bacterial
86 rdf:type schema:DefinedTerm
87 N5b4544e677c94bb3bc5582a3e03237ca schema:name nlm_unique_id
88 schema:value 101128185
89 rdf:type schema:PropertyValue
90 N68f1050db29947d2a732ec869dbfb4e4 rdf:first sg:person.01035160034.34
91 rdf:rest N084766ebd2a24b919c2025e13731cd62
92 N74c684f691c5414c97b2f9c524a8f4d6 schema:issueNumber 1-2
93 rdf:type schema:PublicationIssue
94 N7ad6e9316314420a88fe0033866001de schema:name readcube_id
95 schema:value 36aabebba5f4899a6c06ae639667ac1388d07c354748b492afc8d9bdd0d642eb
96 rdf:type schema:PropertyValue
97 N7b7fe19bfcd54d058b8c9c9475e698bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Thermotoga maritima
99 rdf:type schema:DefinedTerm
100 N9257a67325b04e08828f31ff60dc05b8 rdf:first sg:person.01132521265.21
101 rdf:rest rdf:nil
102 N9f37032af5e345aeba0be970c38db44f schema:name dimensions_id
103 schema:value pub.1011474125
104 rdf:type schema:PropertyValue
105 N9fb3282f063d46788054fb7adb22bb38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Models, Molecular
107 rdf:type schema:DefinedTerm
108 Na04c605d43fa4df2979acc02829632e7 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Naa71138bf4c34e1d8e45554dbbc9fc32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Protein Folding
112 rdf:type schema:DefinedTerm
113 Nbe3f1b11bdf74aeba5d88b091ac53acb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Recombinant Proteins
115 rdf:type schema:DefinedTerm
116 Nc451076f3d704c78be49b593e3c3a613 schema:name pubmed_id
117 schema:value 15263852
118 rdf:type schema:PropertyValue
119 Nc7dded9bdd544c63a991a7a5d5bc257d schema:name doi
120 schema:value 10.1023/b:jsfg.0000029194.04443.50
121 rdf:type schema:PropertyValue
122 Ne65693bfc47e4b8dbb8800f0ae1758ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Proteomics
124 rdf:type schema:DefinedTerm
125 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
126 schema:name Biological Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
129 schema:name Biochemistry and Cell Biology
130 rdf:type schema:DefinedTerm
131 sg:grant.2440509 http://pending.schema.org/fundedItem sg:pub.10.1023/b:jsfg.0000029194.04443.50
132 rdf:type schema:MonetaryGrant
133 sg:journal.1029935 schema:issn 1345-711X
134 1570-0267
135 schema:name Journal of Structural and Functional Genomics
136 rdf:type schema:Periodical
137 sg:person.01016272665.79 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
138 schema:familyName Deacon
139 schema:givenName Ashley M.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016272665.79
141 rdf:type schema:Person
142 sg:person.01035160034.34 schema:affiliation https://www.grid.ac/institutes/grid.418185.1
143 schema:familyName DiDonato
144 schema:givenName Michael
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035160034.34
146 rdf:type schema:Person
147 sg:person.01132521265.21 schema:affiliation https://www.grid.ac/institutes/grid.418185.1
148 schema:familyName Lesley
149 schema:givenName Scott A.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132521265.21
151 rdf:type schema:Person
152 sg:person.01357335165.07 schema:affiliation https://www.grid.ac/institutes/grid.418185.1
153 schema:familyName Klock
154 schema:givenName Heath E.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357335165.07
156 rdf:type schema:Person
157 sg:person.0614735400.29 schema:affiliation https://www.grid.ac/institutes/grid.418185.1
158 schema:familyName McMullan
159 schema:givenName Daniel
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614735400.29
161 rdf:type schema:Person
162 sg:pub.10.1007/bf00409880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049574822
163 https://doi.org/10.1007/bf00409880
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/20601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050152586
166 https://doi.org/10.1038/20601
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1006/prep.2001.1465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002487874
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0723-2020(87)80053-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008035907
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0966-842x(98)01311-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007936367
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1073/pnas.142413399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048803315
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1107/s0021889802001474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045793097
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1107/s0021889802016709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037044879
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1107/s0907444902016840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053412303
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1107/s0907444903007790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007477557
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1107/s0909049502015170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022230728
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1111/j.1432-1033.1990.tb15454.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011522412
189 rdf:type schema:CreativeWork
190 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
191 schema:name Stanford Synchrotron Radiation Laboratory, Stanford University, 2575 Sand Hill Road, M599, 94025, Menlo Park, CA, USA
192 The Joint Center for Structural Genomics, USA
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.418185.1 schema:alternateName Genomics Institute of the Novartis Research Foundation
195 schema:name The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, 92121, San Diego, CA, USA
196 The Joint Center for Structural Genomics, USA
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...