Of Dogs and Fleas: The Dynamics of N Uncoupled Two-State Systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-09

AUTHORS

Ch. Hauert, J. Nagler, H. G. Schuster

ABSTRACT

The historical Ehrenfest model dating back to 1907 describes the process of equilibration together with fluctuations around the thermal equilibrium. This approach represents a special case in the dynamics of N uncoupled two-state systems. In this article we present a generalization of the original model by introducing an additional parameter p which denotes the probability of a single state change. Analytical solutions for the probability distribution of the system's state as well as the fluctuation distribution are derived. Interestingly, close inspection of the fluctuation distribution reveals an intrinsic time scale. Sampling the system's state at much slower rates yields the familiar macroscopic exponential distribution for equilibrium processes. For faster measurements a power law extends roughly over log10N orders of magnitude followed by an exponential tail. At some point, further increases of the sampling rate merely result in a shift of the fluctuation distribution towards higher values leaving plateau at small fluctuation sizes behind. Since the generic solution is rather unwieldy, we derive and discuss simple and intuitive analytical solutions in the limit of small p and large N. Furthermore, we relax the quantization of time by considering a complementary approach in continuous time. Finally we demonstrate that the fluctuation distributions resulting from the two different approaches bear identical characteristic features. More... »

PAGES

1453-1469

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/b:joss.0000041725.70622.c4

DOI

http://dx.doi.org/10.1023/b:joss.0000041725.70622.c4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029304383


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departments of Zoology & Mathematics, University of British Columbia, 6270 University Boulevard, Vancouver B.C. V6T 1Z4, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "Departments of Zoology & Mathematics, University of British Columbia, 6270 University Boulevard, Vancouver B.C. V6T 1Z4, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hauert", 
        "givenName": "Ch.", 
        "id": "sg:person.01047322576.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047322576.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Theoretische Physik, Fachbereich 1, Universit\u00e4t Bremen, Otto-Hahn-Allee, D-28334, Bremen, Germany; e-mail:", 
          "id": "http://www.grid.ac/institutes/grid.7704.4", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Fachbereich 1, Universit\u00e4t Bremen, Otto-Hahn-Allee, D-28334, Bremen, Germany; e-mail:"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagler", 
        "givenName": "J.", 
        "id": "sg:person.0615513231.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615513231.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Theoretische Physik, Fachbereich 1, Universit\u00e4t Bremen, Otto-Hahn-Allee, D-28334, Bremen, Germany; e-mail:", 
          "id": "http://www.grid.ac/institutes/grid.7704.4", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Fachbereich 1, Universit\u00e4t Bremen, Otto-Hahn-Allee, D-28334, Bremen, Germany; e-mail:"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schuster", 
        "givenName": "H. G.", 
        "id": "sg:person.01206400413.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206400413.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/379049a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043571767", 
          "https://doi.org/10.1038/379049a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-09", 
    "datePublishedReg": "2004-09-01", 
    "description": "The historical Ehrenfest model dating back to 1907 describes the process of equilibration together with fluctuations around the thermal equilibrium. This approach represents a special case in the dynamics of N uncoupled two-state systems. In this article we present a generalization of the original model by introducing an additional parameter p which denotes the probability of a single state change. Analytical solutions for the probability distribution of the system's state as well as the fluctuation distribution are derived. Interestingly, close inspection of the fluctuation distribution reveals an intrinsic time scale. Sampling the system's state at much slower rates yields the familiar macroscopic exponential distribution for equilibrium processes. For faster measurements a power law extends roughly over log10N orders of magnitude followed by an exponential tail. At some point, further increases of the sampling rate merely result in a shift of the fluctuation distribution towards higher values leaving plateau at small fluctuation sizes behind. Since the generic solution is rather unwieldy, we derive and discuss simple and intuitive analytical solutions in the limit of small p and large N. Furthermore, we relax the quantization of time by considering a complementary approach in continuous time. Finally we demonstrate that the fluctuation distributions resulting from the two different approaches bear identical characteristic features.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/b:joss.0000041725.70622.c4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "116"
      }
    ], 
    "keywords": [
      "analytical solution", 
      "fluctuation distribution", 
      "system state", 
      "fast measurement", 
      "thermal equilibrium", 
      "intrinsic time scale", 
      "power law", 
      "sampling rate", 
      "generic solution", 
      "process", 
      "original model", 
      "solution", 
      "distribution", 
      "equilibrium process", 
      "exponential tail", 
      "further increase", 
      "higher values", 
      "model", 
      "approach", 
      "dynamics", 
      "system", 
      "state changes", 
      "probability distribution", 
      "inspection", 
      "time scales", 
      "measurements", 
      "quantization of time", 
      "continuous time", 
      "different approaches", 
      "fluctuations", 
      "equilibrium", 
      "special case", 
      "parameter p", 
      "state", 
      "rate", 
      "exponential distribution", 
      "law", 
      "order", 
      "magnitude", 
      "fluctuation size", 
      "size", 
      "limit", 
      "quantization", 
      "time", 
      "complementary approaches", 
      "characteristic features", 
      "Uncoupled", 
      "process of equilibration", 
      "equilibration", 
      "generalization", 
      "probability", 
      "closer inspection", 
      "scale", 
      "slower rate", 
      "point", 
      "increase", 
      "values", 
      "plateau", 
      "features", 
      "cases", 
      "two-state system", 
      "article", 
      "changes", 
      "tail", 
      "shift", 
      "Ehrenfest model", 
      "additional parameter p", 
      "dogs", 
      "fleas", 
      "historical Ehrenfest model", 
      "single state change", 
      "familiar macroscopic exponential distribution", 
      "macroscopic exponential distribution", 
      "log10N orders", 
      "small fluctuation sizes", 
      "intuitive analytical solutions", 
      "identical characteristic features"
    ], 
    "name": "Of Dogs and Fleas: The Dynamics of N Uncoupled Two-State Systems", 
    "pagination": "1453-1469", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029304383"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/b:joss.0000041725.70622.c4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/b:joss.0000041725.70622.c4", 
      "https://app.dimensions.ai/details/publication/pub.1029304383"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_386.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/b:joss.0000041725.70622.c4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:joss.0000041725.70622.c4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:joss.0000041725.70622.c4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:joss.0000041725.70622.c4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:joss.0000041725.70622.c4'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      22 PREDICATES      103 URIs      94 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/b:joss.0000041725.70622.c4 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author Ncccaa58cf121447fa5339090b998a73b
4 schema:citation sg:pub.10.1038/379049a0
5 schema:datePublished 2004-09
6 schema:datePublishedReg 2004-09-01
7 schema:description The historical Ehrenfest model dating back to 1907 describes the process of equilibration together with fluctuations around the thermal equilibrium. This approach represents a special case in the dynamics of N uncoupled two-state systems. In this article we present a generalization of the original model by introducing an additional parameter p which denotes the probability of a single state change. Analytical solutions for the probability distribution of the system's state as well as the fluctuation distribution are derived. Interestingly, close inspection of the fluctuation distribution reveals an intrinsic time scale. Sampling the system's state at much slower rates yields the familiar macroscopic exponential distribution for equilibrium processes. For faster measurements a power law extends roughly over log10N orders of magnitude followed by an exponential tail. At some point, further increases of the sampling rate merely result in a shift of the fluctuation distribution towards higher values leaving plateau at small fluctuation sizes behind. Since the generic solution is rather unwieldy, we derive and discuss simple and intuitive analytical solutions in the limit of small p and large N. Furthermore, we relax the quantization of time by considering a complementary approach in continuous time. Finally we demonstrate that the fluctuation distributions resulting from the two different approaches bear identical characteristic features.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N9a1eed6d8213420f87cfbb5492526c37
12 Nd79bb4401b974c4591945b318af96734
13 sg:journal.1040979
14 schema:keywords Ehrenfest model
15 Uncoupled
16 additional parameter p
17 analytical solution
18 approach
19 article
20 cases
21 changes
22 characteristic features
23 closer inspection
24 complementary approaches
25 continuous time
26 different approaches
27 distribution
28 dogs
29 dynamics
30 equilibration
31 equilibrium
32 equilibrium process
33 exponential distribution
34 exponential tail
35 familiar macroscopic exponential distribution
36 fast measurement
37 features
38 fleas
39 fluctuation distribution
40 fluctuation size
41 fluctuations
42 further increase
43 generalization
44 generic solution
45 higher values
46 historical Ehrenfest model
47 identical characteristic features
48 increase
49 inspection
50 intrinsic time scale
51 intuitive analytical solutions
52 law
53 limit
54 log10N orders
55 macroscopic exponential distribution
56 magnitude
57 measurements
58 model
59 order
60 original model
61 parameter p
62 plateau
63 point
64 power law
65 probability
66 probability distribution
67 process
68 process of equilibration
69 quantization
70 quantization of time
71 rate
72 sampling rate
73 scale
74 shift
75 single state change
76 size
77 slower rate
78 small fluctuation sizes
79 solution
80 special case
81 state
82 state changes
83 system
84 system state
85 tail
86 thermal equilibrium
87 time
88 time scales
89 two-state system
90 values
91 schema:name Of Dogs and Fleas: The Dynamics of N Uncoupled Two-State Systems
92 schema:pagination 1453-1469
93 schema:productId N77169985cbd84a5da66a6f0e46ba6c9e
94 N95730a12cbc34a6fa02f3789263e6d6e
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029304383
96 https://doi.org/10.1023/b:joss.0000041725.70622.c4
97 schema:sdDatePublished 2022-01-01T18:13
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher Nacb908f1f8a04bbcb95b0283c1808963
100 schema:url https://doi.org/10.1023/b:joss.0000041725.70622.c4
101 sgo:license sg:explorer/license/
102 sgo:sdDataset articles
103 rdf:type schema:ScholarlyArticle
104 N77169985cbd84a5da66a6f0e46ba6c9e schema:name doi
105 schema:value 10.1023/b:joss.0000041725.70622.c4
106 rdf:type schema:PropertyValue
107 N95730a12cbc34a6fa02f3789263e6d6e schema:name dimensions_id
108 schema:value pub.1029304383
109 rdf:type schema:PropertyValue
110 N9a1eed6d8213420f87cfbb5492526c37 schema:volumeNumber 116
111 rdf:type schema:PublicationVolume
112 Nacb908f1f8a04bbcb95b0283c1808963 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Ncccaa58cf121447fa5339090b998a73b rdf:first sg:person.01047322576.34
115 rdf:rest Nedd12a040e414ad2aa7e33806e6e1711
116 Nd79bb4401b974c4591945b318af96734 schema:issueNumber 5-6
117 rdf:type schema:PublicationIssue
118 Nec4de3da37834933a7859108e11839fe rdf:first sg:person.01206400413.99
119 rdf:rest rdf:nil
120 Nedd12a040e414ad2aa7e33806e6e1711 rdf:first sg:person.0615513231.04
121 rdf:rest Nec4de3da37834933a7859108e11839fe
122 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
123 schema:name Mathematical Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
126 schema:name Physical Sciences
127 rdf:type schema:DefinedTerm
128 sg:journal.1040979 schema:issn 0022-4715
129 1572-9613
130 schema:name Journal of Statistical Physics
131 schema:publisher Springer Nature
132 rdf:type schema:Periodical
133 sg:person.01047322576.34 schema:affiliation grid-institutes:grid.17091.3e
134 schema:familyName Hauert
135 schema:givenName Ch.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047322576.34
137 rdf:type schema:Person
138 sg:person.01206400413.99 schema:affiliation grid-institutes:grid.7704.4
139 schema:familyName Schuster
140 schema:givenName H. G.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206400413.99
142 rdf:type schema:Person
143 sg:person.0615513231.04 schema:affiliation grid-institutes:grid.7704.4
144 schema:familyName Nagler
145 schema:givenName J.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615513231.04
147 rdf:type schema:Person
148 sg:pub.10.1038/379049a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043571767
149 https://doi.org/10.1038/379049a0
150 rdf:type schema:CreativeWork
151 grid-institutes:grid.17091.3e schema:alternateName Departments of Zoology & Mathematics, University of British Columbia, 6270 University Boulevard, Vancouver B.C. V6T 1Z4, Canada
152 schema:name Departments of Zoology & Mathematics, University of British Columbia, 6270 University Boulevard, Vancouver B.C. V6T 1Z4, Canada
153 rdf:type schema:Organization
154 grid-institutes:grid.7704.4 schema:alternateName Institut für Theoretische Physik, Fachbereich 1, Universität Bremen, Otto-Hahn-Allee, D-28334, Bremen, Germany; e-mail:
155 schema:name Institut für Theoretische Physik, Fachbereich 1, Universität Bremen, Otto-Hahn-Allee, D-28334, Bremen, Germany; e-mail:
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...