Domain of Definition of Levermore's Five-Moment System View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1998-12

AUTHORS

Michael Junk

ABSTRACT

The simplest system in Levermore's moment hierarchy involving moments higher than second order is the five-moment closure. It is obtained by taking velocity moments of the one-dimensional Boltzmann equation under the assumption that the velocity distribution is a maximum-entropy function. The moment vectors for which a maximum-entropy function exists consequently make up the domain of definition of the system. The aim of this article is a complete characterization of the structure of the domain of definition and the connected maximum-entropy problem. The space-homogeneous case of the equation and numerical aspects are also addressed. More... »

PAGES

1143-1167

References to SciGraph publications

  • 1996-06. Moment closure hierarchies for kinetic theories in JOURNAL OF STATISTICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/b:joss.0000033155.07331.d9

    DOI

    http://dx.doi.org/10.1023/b:joss.0000033155.07331.d9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048208765


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Fraunhofer Institute for Industrial Mathematics", 
              "id": "https://www.grid.ac/institutes/grid.461635.3", 
              "name": [
                "Institut f\u00fcr Techno- und Wirtschaftsmathematik, 67663, Kaiserslautern, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Junk", 
            "givenName": "Michael", 
            "id": "sg:person.01147254771.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147254771.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02179552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003473715", 
              "https://doi.org/10.1007/bf02179552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02179552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003473715", 
              "https://doi.org/10.1007/bf02179552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.526446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058103465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/19/14/001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059068077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/20/18/047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059069108"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-12", 
        "datePublishedReg": "1998-12-01", 
        "description": "The simplest system in Levermore's moment hierarchy involving moments higher than second order is the five-moment closure. It is obtained by taking velocity moments of the one-dimensional Boltzmann equation under the assumption that the velocity distribution is a maximum-entropy function. The moment vectors for which a maximum-entropy function exists consequently make up the domain of definition of the system. The aim of this article is a complete characterization of the structure of the domain of definition and the connected maximum-entropy problem. The space-homogeneous case of the equation and numerical aspects are also addressed.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/b:joss.0000033155.07331.d9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5-6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "93"
          }
        ], 
        "name": "Domain of Definition of Levermore's Five-Moment System", 
        "pagination": "1143-1167", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e5a8e40900e06fc82c055fcad9ae70283c2c15b86d7b12e69e12d99b2de074e7"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/b:joss.0000033155.07331.d9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048208765"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/b:joss.0000033155.07331.d9", 
          "https://app.dimensions.ai/details/publication/pub.1048208765"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000508.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023%2FB%3AJOSS.0000033155.07331.d9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:joss.0000033155.07331.d9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:joss.0000033155.07331.d9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:joss.0000033155.07331.d9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:joss.0000033155.07331.d9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    74 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/b:joss.0000033155.07331.d9 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N2e393d9b4ca647e08cf639fe79c9ef86
    4 schema:citation sg:pub.10.1007/bf02179552
    5 https://doi.org/10.1063/1.526446
    6 https://doi.org/10.1088/0305-4470/19/14/001
    7 https://doi.org/10.1088/0305-4470/20/18/047
    8 schema:datePublished 1998-12
    9 schema:datePublishedReg 1998-12-01
    10 schema:description The simplest system in Levermore's moment hierarchy involving moments higher than second order is the five-moment closure. It is obtained by taking velocity moments of the one-dimensional Boltzmann equation under the assumption that the velocity distribution is a maximum-entropy function. The moment vectors for which a maximum-entropy function exists consequently make up the domain of definition of the system. The aim of this article is a complete characterization of the structure of the domain of definition and the connected maximum-entropy problem. The space-homogeneous case of the equation and numerical aspects are also addressed.
    11 schema:genre research_article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree true
    14 schema:isPartOf N15f74571e9874a38bbf8efa05cca4dbb
    15 Nf3995e59bdc74afba9e7d442f823161e
    16 sg:journal.1040979
    17 schema:name Domain of Definition of Levermore's Five-Moment System
    18 schema:pagination 1143-1167
    19 schema:productId N284ea5f0672745e083133ca1eeaef42b
    20 N4f33043a68d24331abcdb28be308aee0
    21 Nb41adbd2ac11470881de2059cc60ecc3
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048208765
    23 https://doi.org/10.1023/b:joss.0000033155.07331.d9
    24 schema:sdDatePublished 2019-04-10T18:19
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N9891ee9a4f3d4bc79e9c0b96e99ea948
    27 schema:url http://link.springer.com/10.1023%2FB%3AJOSS.0000033155.07331.d9
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset articles
    30 rdf:type schema:ScholarlyArticle
    31 N15f74571e9874a38bbf8efa05cca4dbb schema:volumeNumber 93
    32 rdf:type schema:PublicationVolume
    33 N284ea5f0672745e083133ca1eeaef42b schema:name dimensions_id
    34 schema:value pub.1048208765
    35 rdf:type schema:PropertyValue
    36 N2e393d9b4ca647e08cf639fe79c9ef86 rdf:first sg:person.01147254771.30
    37 rdf:rest rdf:nil
    38 N4f33043a68d24331abcdb28be308aee0 schema:name readcube_id
    39 schema:value e5a8e40900e06fc82c055fcad9ae70283c2c15b86d7b12e69e12d99b2de074e7
    40 rdf:type schema:PropertyValue
    41 N9891ee9a4f3d4bc79e9c0b96e99ea948 schema:name Springer Nature - SN SciGraph project
    42 rdf:type schema:Organization
    43 Nb41adbd2ac11470881de2059cc60ecc3 schema:name doi
    44 schema:value 10.1023/b:joss.0000033155.07331.d9
    45 rdf:type schema:PropertyValue
    46 Nf3995e59bdc74afba9e7d442f823161e schema:issueNumber 5-6
    47 rdf:type schema:PublicationIssue
    48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    49 schema:name Mathematical Sciences
    50 rdf:type schema:DefinedTerm
    51 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    52 schema:name Pure Mathematics
    53 rdf:type schema:DefinedTerm
    54 sg:journal.1040979 schema:issn 0022-4715
    55 1572-9613
    56 schema:name Journal of Statistical Physics
    57 rdf:type schema:Periodical
    58 sg:person.01147254771.30 schema:affiliation https://www.grid.ac/institutes/grid.461635.3
    59 schema:familyName Junk
    60 schema:givenName Michael
    61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147254771.30
    62 rdf:type schema:Person
    63 sg:pub.10.1007/bf02179552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003473715
    64 https://doi.org/10.1007/bf02179552
    65 rdf:type schema:CreativeWork
    66 https://doi.org/10.1063/1.526446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058103465
    67 rdf:type schema:CreativeWork
    68 https://doi.org/10.1088/0305-4470/19/14/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059068077
    69 rdf:type schema:CreativeWork
    70 https://doi.org/10.1088/0305-4470/20/18/047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059069108
    71 rdf:type schema:CreativeWork
    72 https://www.grid.ac/institutes/grid.461635.3 schema:alternateName Fraunhofer Institute for Industrial Mathematics
    73 schema:name Institut für Techno- und Wirtschaftsmathematik, 67663, Kaiserslautern, Germany
    74 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...