Ontology type: schema:ScholarlyArticle Open Access: True
1998-12
AUTHORS ABSTRACTThe simplest system in Levermore's moment hierarchy involving moments higher than second order is the five-moment closure. It is obtained by taking velocity moments of the one-dimensional Boltzmann equation under the assumption that the velocity distribution is a maximum-entropy function. The moment vectors for which a maximum-entropy function exists consequently make up the domain of definition of the system. The aim of this article is a complete characterization of the structure of the domain of definition and the connected maximum-entropy problem. The space-homogeneous case of the equation and numerical aspects are also addressed. More... »
PAGES1143-1167
http://scigraph.springernature.com/pub.10.1023/b:joss.0000033155.07331.d9
DOIhttp://dx.doi.org/10.1023/b:joss.0000033155.07331.d9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1048208765
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Fraunhofer Institute for Industrial Mathematics",
"id": "https://www.grid.ac/institutes/grid.461635.3",
"name": [
"Institut f\u00fcr Techno- und Wirtschaftsmathematik, 67663, Kaiserslautern, Germany"
],
"type": "Organization"
},
"familyName": "Junk",
"givenName": "Michael",
"id": "sg:person.01147254771.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147254771.30"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02179552",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003473715",
"https://doi.org/10.1007/bf02179552"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02179552",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003473715",
"https://doi.org/10.1007/bf02179552"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.526446",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058103465"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0305-4470/19/14/001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059068077"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0305-4470/20/18/047",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059069108"
],
"type": "CreativeWork"
}
],
"datePublished": "1998-12",
"datePublishedReg": "1998-12-01",
"description": "The simplest system in Levermore's moment hierarchy involving moments higher than second order is the five-moment closure. It is obtained by taking velocity moments of the one-dimensional Boltzmann equation under the assumption that the velocity distribution is a maximum-entropy function. The moment vectors for which a maximum-entropy function exists consequently make up the domain of definition of the system. The aim of this article is a complete characterization of the structure of the domain of definition and the connected maximum-entropy problem. The space-homogeneous case of the equation and numerical aspects are also addressed.",
"genre": "research_article",
"id": "sg:pub.10.1023/b:joss.0000033155.07331.d9",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1040979",
"issn": [
"0022-4715",
"1572-9613"
],
"name": "Journal of Statistical Physics",
"type": "Periodical"
},
{
"issueNumber": "5-6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "93"
}
],
"name": "Domain of Definition of Levermore's Five-Moment System",
"pagination": "1143-1167",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"e5a8e40900e06fc82c055fcad9ae70283c2c15b86d7b12e69e12d99b2de074e7"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1023/b:joss.0000033155.07331.d9"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1048208765"
]
}
],
"sameAs": [
"https://doi.org/10.1023/b:joss.0000033155.07331.d9",
"https://app.dimensions.ai/details/publication/pub.1048208765"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T18:19",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000508.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1023%2FB%3AJOSS.0000033155.07331.d9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:joss.0000033155.07331.d9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:joss.0000033155.07331.d9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:joss.0000033155.07331.d9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:joss.0000033155.07331.d9'
This table displays all metadata directly associated to this object as RDF triples.
74 TRIPLES
21 PREDICATES
31 URIs
19 LITERALS
7 BLANK NODES