On Gibbs Measures of Models with Competing Ternary and Binary Interactions and Corresponding von Neumann Algebras View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-02

AUTHORS

Farruh Mukhamedov, Utkir Rozikov

ABSTRACT

In the present paper a model with competing ternary (J2) and binary (J1) interactions with spin values ±1, on a Cayley tree is considered. One studies the structure of Gibbs measures for the model considered. It is known, that under some conditions on parameters J1,J2 (resp. in the opposite case) there are three (resp. a unique) translation-invariant Gibbs measures. We prove, that two of them (minimal and maximal) are extreme in the set of all Gibbs measures and also construct two periodic (with period 2) and uncountable number of distinct non-translation-invariant Gibbs measures. One shows that they are extreme. Besides, types of von Neumann algebras, generated by GNS-representation associated with diagonal states corresponding to extreme periodic Gibbs measures, are determined. Namely, it is shown that an algebra associated with the unordered phase is a factor of type IIIλ, where λ=exp{−2βJ2}, β>0 is the inverse temperature. We find conditions, which ensure that von Neumann algebras, associated with the periodic Gibbs measures, are factors of type IIIδ, otherwise they have type III1. More... »

PAGES

825-848

References to SciGraph publications

  • 1992-06. Phase diagrams of Ising models on Husimi trees II. Pair Wand multisite interaction systems in JOURNAL OF STATISTICAL PHYSICS
  • 1990-03. Extremity of the disordered phase in the Ising model on the Bethe lattice in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1968-06. Structure of the algebras of some free systems in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1997-04. Description of periodic extreme gibbs measures of some lattice models on the Cayley tree in THEORETICAL AND MATHEMATICAL PHYSICS
  • 1998-04. Description of limit Gibbs measures for λ-models on bethe lattices in SIBERIAN MATHEMATICAL JOURNAL
  • 1970-03. Free states of the canonical anticommutation relations in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2000-04. Von Neumann algebras generated by translation-invariant Gibbs states of the Ising model on a Bethe lattice in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2001-02. Von Neumann algebra corresponding to one phase of the inhomogeneous Potts model on a Cayley tree in THEORETICAL AND MATHEMATICAL PHYSICS
  • 1990-03. Ising models on the Lobachevsky plane in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1995-04. On the purity of the limiting gibbs state for the Ising model on the Bethe lattice in JOURNAL OF STATISTICAL PHYSICS
  • 1975. Representations of AF-Algebras and of the Group U (∞) in NONE
  • 1981-06. Modulated phase of an ising system with competing interactions on a Cayley tree in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • 1985-08. Phase diagram of the Ising Model on a Cayley tree in the presence of competing interactions and magnetic field in JOURNAL OF STATISTICAL PHYSICS
  • 2002-03. Exact Solution of the Ising Model on the Cayley Tree with Competing Ternary and Binary Interactions in THEORETICAL AND MATHEMATICAL PHYSICS
  • 1998-07. Non-Bernoullian Quantum K-Systems in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1998-10. On the Phase Diagram of the Random Field Ising Model on the Bethe Lattice in JOURNAL OF STATISTICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/b:joss.0000012509.10642.83

    DOI

    http://dx.doi.org/10.1023/b:joss.0000012509.10642.83

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038268572


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mechanics and Mathematics, National University of Uzbekistan, Vuzgorodok, 700095, Tashkent, Uzbekistan", 
              "id": "http://www.grid.ac/institutes/grid.23471.33", 
              "name": [
                "Department of Mechanics and Mathematics, National University of Uzbekistan, Vuzgorodok, 700095, Tashkent, Uzbekistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mukhamedov", 
            "givenName": "Farruh", 
            "id": "sg:person.010037101206.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010037101206.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Mathematics, 29, F. Hodjaev str., 700143, Tashkent, Uzbekistan", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute of Mathematics, 29, F. Hodjaev str., 700143, Tashkent, Uzbekistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rozikov", 
            "givenName": "Utkir", 
            "id": "sg:person.014213263324.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014213263324.92"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/b:joss.0000026727.43077.49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001365943", 
              "https://doi.org/10.1023/b:joss.0000026727.43077.49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005239609639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027821357", 
              "https://doi.org/10.1023/a:1005239609639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02551055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034623150", 
              "https://doi.org/10.1007/bf02551055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02634202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042152983", 
              "https://doi.org/10.1007/bf02634202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01293605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044978491", 
              "https://doi.org/10.1007/bf01293605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01645492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006877089", 
              "https://doi.org/10.1007/bf01645492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0082276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014430719", 
              "https://doi.org/10.1007/bfb0082276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01645837", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038714085", 
              "https://doi.org/10.1007/bf01645837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02097045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017206630", 
              "https://doi.org/10.1007/bf02097045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01017186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023948254", 
              "https://doi.org/10.1007/bf01017186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02179399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029115716", 
              "https://doi.org/10.1007/bf02179399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02108787", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006639953", 
              "https://doi.org/10.1007/bf02108787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012229838", 
              "https://doi.org/10.1007/s002200050386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01049014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011078957", 
              "https://doi.org/10.1007/bf01049014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02677521", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034234532", 
              "https://doi.org/10.1007/bf02677521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1014771023960", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004815593", 
              "https://doi.org/10.1023/a:1014771023960"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-02", 
        "datePublishedReg": "2004-02-01", 
        "description": "In the present paper a model with competing ternary (J2) and binary (J1) interactions with spin values \u00b11, on a Cayley tree is considered. One studies the structure of Gibbs measures for the model considered. It is known, that under some conditions on parameters J1,J2 (resp. in the opposite case) there are three (resp. a unique) translation-invariant Gibbs measures. We prove, that two of them (minimal and maximal) are extreme in the set of all Gibbs measures and also construct two periodic (with period 2) and uncountable number of distinct non-translation-invariant Gibbs measures. One shows that they are extreme. Besides, types of von Neumann algebras, generated by GNS-representation associated with diagonal states corresponding to extreme periodic Gibbs measures, are determined. Namely, it is shown that an algebra associated with the unordered phase is a factor of type III\u03bb, where \u03bb=exp{\u22122\u03b2J2}, \u03b2>0 is the inverse temperature. We find conditions, which ensure that von Neumann algebras, associated with the periodic Gibbs measures, are factors of type III\u03b4, otherwise they have type III1.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/b:joss.0000012509.10642.83", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "114"
          }
        ], 
        "keywords": [
          "von Neumann algebra", 
          "Neumann algebra", 
          "Gibbs measures", 
          "GNS-representation", 
          "invariant Gibbs measures", 
          "algebra", 
          "type III\u03bb", 
          "inverse temperature", 
          "Cayley tree", 
          "diagonal states", 
          "uncountable number", 
          "type III1", 
          "present paper", 
          "binary interactions", 
          "model", 
          "spin values", 
          "set", 
          "parameters", 
          "conditions", 
          "measures", 
          "number", 
          "trees", 
          "structure", 
          "state", 
          "values", 
          "types", 
          "interaction", 
          "phase", 
          "factors", 
          "III1", 
          "ternary", 
          "temperature", 
          "paper", 
          "translation-invariant Gibbs measures", 
          "extreme periodic Gibbs measures", 
          "periodic Gibbs measures", 
          "unordered phase", 
          "III\u03bb", 
          "type III\u03b4", 
          "III\u03b4", 
          "Competing Ternary", 
          "Corresponding von Neumann Algebras"
        ], 
        "name": "On Gibbs Measures of Models with Competing Ternary and Binary Interactions and Corresponding von Neumann Algebras", 
        "pagination": "825-848", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038268572"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/b:joss.0000012509.10642.83"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/b:joss.0000012509.10642.83", 
          "https://app.dimensions.ai/details/publication/pub.1038268572"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_387.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/b:joss.0000012509.10642.83"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:joss.0000012509.10642.83'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:joss.0000012509.10642.83'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:joss.0000012509.10642.83'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:joss.0000012509.10642.83'


     

    This table displays all metadata directly associated to this object as RDF triples.

    174 TRIPLES      22 PREDICATES      84 URIs      60 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/b:joss.0000012509.10642.83 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Neb8af5e44fd84401a99f9ca04e7b0608
    4 schema:citation sg:pub.10.1007/bf01017186
    5 sg:pub.10.1007/bf01049014
    6 sg:pub.10.1007/bf01293605
    7 sg:pub.10.1007/bf01645492
    8 sg:pub.10.1007/bf01645837
    9 sg:pub.10.1007/bf02097045
    10 sg:pub.10.1007/bf02108787
    11 sg:pub.10.1007/bf02179399
    12 sg:pub.10.1007/bf02551055
    13 sg:pub.10.1007/bf02634202
    14 sg:pub.10.1007/bf02677521
    15 sg:pub.10.1007/bfb0082276
    16 sg:pub.10.1007/s002200050386
    17 sg:pub.10.1023/a:1005239609639
    18 sg:pub.10.1023/a:1014771023960
    19 sg:pub.10.1023/b:joss.0000026727.43077.49
    20 schema:datePublished 2004-02
    21 schema:datePublishedReg 2004-02-01
    22 schema:description In the present paper a model with competing ternary (J2) and binary (J1) interactions with spin values ±1, on a Cayley tree is considered. One studies the structure of Gibbs measures for the model considered. It is known, that under some conditions on parameters J1,J2 (resp. in the opposite case) there are three (resp. a unique) translation-invariant Gibbs measures. We prove, that two of them (minimal and maximal) are extreme in the set of all Gibbs measures and also construct two periodic (with period 2) and uncountable number of distinct non-translation-invariant Gibbs measures. One shows that they are extreme. Besides, types of von Neumann algebras, generated by GNS-representation associated with diagonal states corresponding to extreme periodic Gibbs measures, are determined. Namely, it is shown that an algebra associated with the unordered phase is a factor of type IIIλ, where λ=exp{−2βJ2}, β>0 is the inverse temperature. We find conditions, which ensure that von Neumann algebras, associated with the periodic Gibbs measures, are factors of type IIIδ, otherwise they have type III1.
    23 schema:genre article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N7a800435ff1a451d82d5f7c318b518c3
    27 Nbe3bc21fe01741b4ab21793e75c0bd91
    28 sg:journal.1040979
    29 schema:keywords Cayley tree
    30 Competing Ternary
    31 Corresponding von Neumann Algebras
    32 GNS-representation
    33 Gibbs measures
    34 III1
    35 IIIδ
    36 IIIλ
    37 Neumann algebra
    38 algebra
    39 binary interactions
    40 conditions
    41 diagonal states
    42 extreme periodic Gibbs measures
    43 factors
    44 interaction
    45 invariant Gibbs measures
    46 inverse temperature
    47 measures
    48 model
    49 number
    50 paper
    51 parameters
    52 periodic Gibbs measures
    53 phase
    54 present paper
    55 set
    56 spin values
    57 state
    58 structure
    59 temperature
    60 ternary
    61 translation-invariant Gibbs measures
    62 trees
    63 type III1
    64 type IIIδ
    65 type IIIλ
    66 types
    67 uncountable number
    68 unordered phase
    69 values
    70 von Neumann algebra
    71 schema:name On Gibbs Measures of Models with Competing Ternary and Binary Interactions and Corresponding von Neumann Algebras
    72 schema:pagination 825-848
    73 schema:productId N2e14a11baaac4b58b307110c04220a9a
    74 N3f27c308fff84a8692ee7356d58882d1
    75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038268572
    76 https://doi.org/10.1023/b:joss.0000012509.10642.83
    77 schema:sdDatePublished 2022-01-01T18:14
    78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    79 schema:sdPublisher Nc0c348004ece4150a6b04771b7be2521
    80 schema:url https://doi.org/10.1023/b:joss.0000012509.10642.83
    81 sgo:license sg:explorer/license/
    82 sgo:sdDataset articles
    83 rdf:type schema:ScholarlyArticle
    84 N2e14a11baaac4b58b307110c04220a9a schema:name doi
    85 schema:value 10.1023/b:joss.0000012509.10642.83
    86 rdf:type schema:PropertyValue
    87 N3f27c308fff84a8692ee7356d58882d1 schema:name dimensions_id
    88 schema:value pub.1038268572
    89 rdf:type schema:PropertyValue
    90 N696bd2f1ad5741d2b0af41c8e3609a23 rdf:first sg:person.014213263324.92
    91 rdf:rest rdf:nil
    92 N7a800435ff1a451d82d5f7c318b518c3 schema:issueNumber 3-4
    93 rdf:type schema:PublicationIssue
    94 Nbe3bc21fe01741b4ab21793e75c0bd91 schema:volumeNumber 114
    95 rdf:type schema:PublicationVolume
    96 Nc0c348004ece4150a6b04771b7be2521 schema:name Springer Nature - SN SciGraph project
    97 rdf:type schema:Organization
    98 Neb8af5e44fd84401a99f9ca04e7b0608 rdf:first sg:person.010037101206.79
    99 rdf:rest N696bd2f1ad5741d2b0af41c8e3609a23
    100 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Mathematical Sciences
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Pure Mathematics
    105 rdf:type schema:DefinedTerm
    106 sg:journal.1040979 schema:issn 0022-4715
    107 1572-9613
    108 schema:name Journal of Statistical Physics
    109 schema:publisher Springer Nature
    110 rdf:type schema:Periodical
    111 sg:person.010037101206.79 schema:affiliation grid-institutes:grid.23471.33
    112 schema:familyName Mukhamedov
    113 schema:givenName Farruh
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010037101206.79
    115 rdf:type schema:Person
    116 sg:person.014213263324.92 schema:affiliation grid-institutes:None
    117 schema:familyName Rozikov
    118 schema:givenName Utkir
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014213263324.92
    120 rdf:type schema:Person
    121 sg:pub.10.1007/bf01017186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023948254
    122 https://doi.org/10.1007/bf01017186
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/bf01049014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011078957
    125 https://doi.org/10.1007/bf01049014
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/bf01293605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044978491
    128 https://doi.org/10.1007/bf01293605
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/bf01645492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006877089
    131 https://doi.org/10.1007/bf01645492
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/bf01645837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038714085
    134 https://doi.org/10.1007/bf01645837
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/bf02097045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017206630
    137 https://doi.org/10.1007/bf02097045
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/bf02108787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006639953
    140 https://doi.org/10.1007/bf02108787
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf02179399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029115716
    143 https://doi.org/10.1007/bf02179399
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/bf02551055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034623150
    146 https://doi.org/10.1007/bf02551055
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bf02634202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042152983
    149 https://doi.org/10.1007/bf02634202
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bf02677521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034234532
    152 https://doi.org/10.1007/bf02677521
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/bfb0082276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014430719
    155 https://doi.org/10.1007/bfb0082276
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s002200050386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012229838
    158 https://doi.org/10.1007/s002200050386
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1023/a:1005239609639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027821357
    161 https://doi.org/10.1023/a:1005239609639
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1023/a:1014771023960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004815593
    164 https://doi.org/10.1023/a:1014771023960
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1023/b:joss.0000026727.43077.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001365943
    167 https://doi.org/10.1023/b:joss.0000026727.43077.49
    168 rdf:type schema:CreativeWork
    169 grid-institutes:None schema:alternateName Institute of Mathematics, 29, F. Hodjaev str., 700143, Tashkent, Uzbekistan
    170 schema:name Institute of Mathematics, 29, F. Hodjaev str., 700143, Tashkent, Uzbekistan
    171 rdf:type schema:Organization
    172 grid-institutes:grid.23471.33 schema:alternateName Department of Mechanics and Mathematics, National University of Uzbekistan, Vuzgorodok, 700095, Tashkent, Uzbekistan
    173 schema:name Department of Mechanics and Mathematics, National University of Uzbekistan, Vuzgorodok, 700095, Tashkent, Uzbekistan
    174 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...