Ontology type: schema:ScholarlyArticle
2003-12
AUTHORSH. Kosina, M. Nedjalkov, S. Selberherr
ABSTRACTA Monte Carlo method for carrier transport is presented, which simultaneously takes into account quantum interference and dissipation effects. The method solves the space-dependent Wigner equation including semi-classical scattering through the Boltzmann collision operator. To this equation a particle model is assigned, which interprets the non-local potential operator as a generation term for numerical particles of positive and negative statistical weight. A numerical technique to control the avalanche of numerical particles is discussed. Since the Wigner equation simplifies to the Boltzmann equation in classical device regions, the solutions of the quantum kinetic equation and the classical one are linked in a natural way. This approach allows the simulation of a quantum region embedded in an extended classical region. Results of this approach are demonstrated for a resonant tunneling diode. More... »
PAGES147-151
http://scigraph.springernature.com/pub.10.1023/b:jcel.0000011416.93047.69
DOIhttp://dx.doi.org/10.1023/b:jcel.0000011416.93047.69
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1046620015
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute for Microelectronics, TU Vienna, Gusshausstr 27\u201329, A-1040, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institute for Microelectronics, TU Vienna, Gusshausstr 27\u201329, A-1040, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Kosina",
"givenName": "H.",
"id": "sg:person.016550513317.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016550513317.72"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Microelectronics, TU Vienna, Gusshausstr 27\u201329, A-1040, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institute for Microelectronics, TU Vienna, Gusshausstr 27\u201329, A-1040, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Nedjalkov",
"givenName": "M.",
"id": "sg:person.011142023427.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Microelectronics, TU Vienna, Gusshausstr 27\u201329, A-1040, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institute for Microelectronics, TU Vienna, Gusshausstr 27\u201329, A-1040, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Selberherr",
"givenName": "S.",
"id": "sg:person.013033344117.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1023/a:1020799224110",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013940672",
"https://doi.org/10.1023/a:1020799224110"
],
"type": "CreativeWork"
}
],
"datePublished": "2003-12",
"datePublishedReg": "2003-12-01",
"description": "A Monte Carlo method for carrier transport is presented, which simultaneously takes into account quantum interference and dissipation effects. The method solves the space-dependent Wigner equation including semi-classical scattering through the Boltzmann collision operator. To this equation a particle model is assigned, which interprets the non-local potential operator as a generation term for numerical particles of positive and negative statistical weight. A numerical technique to control the avalanche of numerical particles is discussed. Since the Wigner equation simplifies to the Boltzmann equation in classical device regions, the solutions of the quantum kinetic equation and the classical one are linked in a natural way. This approach allows the simulation of a quantum region embedded in an extended classical region. Results of this approach are demonstrated for a resonant tunneling diode.",
"genre": "article",
"id": "sg:pub.10.1023/b:jcel.0000011416.93047.69",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1036340",
"issn": [
"1569-8025",
"1572-8137"
],
"name": "Journal of Computational Electronics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2"
}
],
"keywords": [
"Monte Carlo method",
"numerical particles",
"quantum kinetic equation",
"Carlo method",
"resonant tunneling diodes",
"quantum interference",
"Boltzmann collision operator",
"quantum region",
"tunneling diodes",
"Wigner equation",
"carrier transport",
"transport calculations",
"classical region",
"device region",
"collision operator",
"Boltzmann equation",
"statistical weights",
"potential operators",
"numerical techniques",
"particle model",
"dissipation effects",
"equation simplifies",
"equations",
"kinetic equation",
"generation term",
"natural way",
"quantum",
"operators",
"particles",
"scattering",
"diodes",
"calculations",
"region",
"avalanches",
"simulations",
"simplifies",
"approach",
"solution",
"transport",
"model",
"method",
"terms",
"interference",
"technique",
"results",
"effect",
"way",
"weight"
],
"name": "A Monte Carlo Method Seamlessly Linking Quantum and Classical Transport Calculations",
"pagination": "147-151",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1046620015"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1023/b:jcel.0000011416.93047.69"
]
}
],
"sameAs": [
"https://doi.org/10.1023/b:jcel.0000011416.93047.69",
"https://app.dimensions.ai/details/publication/pub.1046620015"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:22",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_370.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1023/b:jcel.0000011416.93047.69"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:jcel.0000011416.93047.69'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:jcel.0000011416.93047.69'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:jcel.0000011416.93047.69'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:jcel.0000011416.93047.69'
This table displays all metadata directly associated to this object as RDF triples.
124 TRIPLES
22 PREDICATES
75 URIs
66 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1023/b:jcel.0000011416.93047.69 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | schema:author | Nda54b79583da47f487816afbb209d547 |
4 | ″ | schema:citation | sg:pub.10.1023/a:1020799224110 |
5 | ″ | schema:datePublished | 2003-12 |
6 | ″ | schema:datePublishedReg | 2003-12-01 |
7 | ″ | schema:description | A Monte Carlo method for carrier transport is presented, which simultaneously takes into account quantum interference and dissipation effects. The method solves the space-dependent Wigner equation including semi-classical scattering through the Boltzmann collision operator. To this equation a particle model is assigned, which interprets the non-local potential operator as a generation term for numerical particles of positive and negative statistical weight. A numerical technique to control the avalanche of numerical particles is discussed. Since the Wigner equation simplifies to the Boltzmann equation in classical device regions, the solutions of the quantum kinetic equation and the classical one are linked in a natural way. This approach allows the simulation of a quantum region embedded in an extended classical region. Results of this approach are demonstrated for a resonant tunneling diode. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N63f1e7514b5a4bdfb477800ab4d19544 |
12 | ″ | ″ | N988e1ff032ff4f60aad9d4a78aeba862 |
13 | ″ | ″ | sg:journal.1036340 |
14 | ″ | schema:keywords | Boltzmann collision operator |
15 | ″ | ″ | Boltzmann equation |
16 | ″ | ″ | Carlo method |
17 | ″ | ″ | Monte Carlo method |
18 | ″ | ″ | Wigner equation |
19 | ″ | ″ | approach |
20 | ″ | ″ | avalanches |
21 | ″ | ″ | calculations |
22 | ″ | ″ | carrier transport |
23 | ″ | ″ | classical region |
24 | ″ | ″ | collision operator |
25 | ″ | ″ | device region |
26 | ″ | ″ | diodes |
27 | ″ | ″ | dissipation effects |
28 | ″ | ″ | effect |
29 | ″ | ″ | equation simplifies |
30 | ″ | ″ | equations |
31 | ″ | ″ | generation term |
32 | ″ | ″ | interference |
33 | ″ | ″ | kinetic equation |
34 | ″ | ″ | method |
35 | ″ | ″ | model |
36 | ″ | ″ | natural way |
37 | ″ | ″ | numerical particles |
38 | ″ | ″ | numerical techniques |
39 | ″ | ″ | operators |
40 | ″ | ″ | particle model |
41 | ″ | ″ | particles |
42 | ″ | ″ | potential operators |
43 | ″ | ″ | quantum |
44 | ″ | ″ | quantum interference |
45 | ″ | ″ | quantum kinetic equation |
46 | ″ | ″ | quantum region |
47 | ″ | ″ | region |
48 | ″ | ″ | resonant tunneling diodes |
49 | ″ | ″ | results |
50 | ″ | ″ | scattering |
51 | ″ | ″ | simplifies |
52 | ″ | ″ | simulations |
53 | ″ | ″ | solution |
54 | ″ | ″ | statistical weights |
55 | ″ | ″ | technique |
56 | ″ | ″ | terms |
57 | ″ | ″ | transport |
58 | ″ | ″ | transport calculations |
59 | ″ | ″ | tunneling diodes |
60 | ″ | ″ | way |
61 | ″ | ″ | weight |
62 | ″ | schema:name | A Monte Carlo Method Seamlessly Linking Quantum and Classical Transport Calculations |
63 | ″ | schema:pagination | 147-151 |
64 | ″ | schema:productId | N4024ae79d6f24e039c0a065ea4a5154d |
65 | ″ | ″ | N89b56b9aa0c84ea7a33ba92687fe8fb5 |
66 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046620015 |
67 | ″ | ″ | https://doi.org/10.1023/b:jcel.0000011416.93047.69 |
68 | ″ | schema:sdDatePublished | 2022-05-20T07:22 |
69 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
70 | ″ | schema:sdPublisher | N9a90b1383f4847da9ba2a27240bd9c58 |
71 | ″ | schema:url | https://doi.org/10.1023/b:jcel.0000011416.93047.69 |
72 | ″ | sgo:license | sg:explorer/license/ |
73 | ″ | sgo:sdDataset | articles |
74 | ″ | rdf:type | schema:ScholarlyArticle |
75 | N4024ae79d6f24e039c0a065ea4a5154d | schema:name | doi |
76 | ″ | schema:value | 10.1023/b:jcel.0000011416.93047.69 |
77 | ″ | rdf:type | schema:PropertyValue |
78 | N49a9b2fffeb04bc999bba871d89daad7 | rdf:first | sg:person.013033344117.92 |
79 | ″ | rdf:rest | rdf:nil |
80 | N63f1e7514b5a4bdfb477800ab4d19544 | schema:volumeNumber | 2 |
81 | ″ | rdf:type | schema:PublicationVolume |
82 | N89b56b9aa0c84ea7a33ba92687fe8fb5 | schema:name | dimensions_id |
83 | ″ | schema:value | pub.1046620015 |
84 | ″ | rdf:type | schema:PropertyValue |
85 | N988e1ff032ff4f60aad9d4a78aeba862 | schema:issueNumber | 2-4 |
86 | ″ | rdf:type | schema:PublicationIssue |
87 | N9a90b1383f4847da9ba2a27240bd9c58 | schema:name | Springer Nature - SN SciGraph project |
88 | ″ | rdf:type | schema:Organization |
89 | Nab8304fd7c0d4971b80b47c69fa9209b | rdf:first | sg:person.011142023427.48 |
90 | ″ | rdf:rest | N49a9b2fffeb04bc999bba871d89daad7 |
91 | Nda54b79583da47f487816afbb209d547 | rdf:first | sg:person.016550513317.72 |
92 | ″ | rdf:rest | Nab8304fd7c0d4971b80b47c69fa9209b |
93 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
94 | ″ | schema:name | Physical Sciences |
95 | ″ | rdf:type | schema:DefinedTerm |
96 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
97 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
98 | ″ | rdf:type | schema:DefinedTerm |
99 | sg:journal.1036340 | schema:issn | 1569-8025 |
100 | ″ | ″ | 1572-8137 |
101 | ″ | schema:name | Journal of Computational Electronics |
102 | ″ | schema:publisher | Springer Nature |
103 | ″ | rdf:type | schema:Periodical |
104 | sg:person.011142023427.48 | schema:affiliation | grid-institutes:grid.5329.d |
105 | ″ | schema:familyName | Nedjalkov |
106 | ″ | schema:givenName | M. |
107 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48 |
108 | ″ | rdf:type | schema:Person |
109 | sg:person.013033344117.92 | schema:affiliation | grid-institutes:grid.5329.d |
110 | ″ | schema:familyName | Selberherr |
111 | ″ | schema:givenName | S. |
112 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92 |
113 | ″ | rdf:type | schema:Person |
114 | sg:person.016550513317.72 | schema:affiliation | grid-institutes:grid.5329.d |
115 | ″ | schema:familyName | Kosina |
116 | ″ | schema:givenName | H. |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016550513317.72 |
118 | ″ | rdf:type | schema:Person |
119 | sg:pub.10.1023/a:1020799224110 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1013940672 |
120 | ″ | ″ | https://doi.org/10.1023/a:1020799224110 |
121 | ″ | rdf:type | schema:CreativeWork |
122 | grid-institutes:grid.5329.d | schema:alternateName | Institute for Microelectronics, TU Vienna, Gusshausstr 27–29, A-1040, Vienna, Austria |
123 | ″ | schema:name | Institute for Microelectronics, TU Vienna, Gusshausstr 27–29, A-1040, Vienna, Austria |
124 | ″ | rdf:type | schema:Organization |