A Monte Carlo Method Seamlessly Linking Quantum and Classical Transport Calculations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-12

AUTHORS

H. Kosina, M. Nedjalkov, S. Selberherr

ABSTRACT

A Monte Carlo method for carrier transport is presented, which simultaneously takes into account quantum interference and dissipation effects. The method solves the space-dependent Wigner equation including semi-classical scattering through the Boltzmann collision operator. To this equation a particle model is assigned, which interprets the non-local potential operator as a generation term for numerical particles of positive and negative statistical weight. A numerical technique to control the avalanche of numerical particles is discussed. Since the Wigner equation simplifies to the Boltzmann equation in classical device regions, the solutions of the quantum kinetic equation and the classical one are linked in a natural way. This approach allows the simulation of a quantum region embedded in an extended classical region. Results of this approach are demonstrated for a resonant tunneling diode. More... »

PAGES

147-151

References to SciGraph publications

  • 2002-07. A Space Dependent Wigner Equation Including Phonon Interaction in JOURNAL OF COMPUTATIONAL ELECTRONICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/b:jcel.0000011416.93047.69

    DOI

    http://dx.doi.org/10.1023/b:jcel.0000011416.93047.69

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046620015


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Microelectronics, TU Vienna, Gusshausstr 27\u201329, A-1040, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5329.d", 
              "name": [
                "Institute for Microelectronics, TU Vienna, Gusshausstr 27\u201329, A-1040, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kosina", 
            "givenName": "H.", 
            "id": "sg:person.016550513317.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016550513317.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Microelectronics, TU Vienna, Gusshausstr 27\u201329, A-1040, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5329.d", 
              "name": [
                "Institute for Microelectronics, TU Vienna, Gusshausstr 27\u201329, A-1040, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nedjalkov", 
            "givenName": "M.", 
            "id": "sg:person.011142023427.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Microelectronics, TU Vienna, Gusshausstr 27\u201329, A-1040, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5329.d", 
              "name": [
                "Institute for Microelectronics, TU Vienna, Gusshausstr 27\u201329, A-1040, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Selberherr", 
            "givenName": "S.", 
            "id": "sg:person.013033344117.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1020799224110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013940672", 
              "https://doi.org/10.1023/a:1020799224110"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-12", 
        "datePublishedReg": "2003-12-01", 
        "description": "A Monte Carlo method for carrier transport is presented, which simultaneously takes into account quantum interference and dissipation effects. The method solves the space-dependent Wigner equation including semi-classical scattering through the Boltzmann collision operator. To this equation a particle model is assigned, which interprets the non-local potential operator as a generation term for numerical particles of positive and negative statistical weight. A numerical technique to control the avalanche of numerical particles is discussed. Since the Wigner equation simplifies to the Boltzmann equation in classical device regions, the solutions of the quantum kinetic equation and the classical one are linked in a natural way. This approach allows the simulation of a quantum region embedded in an extended classical region. Results of this approach are demonstrated for a resonant tunneling diode.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/b:jcel.0000011416.93047.69", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1036340", 
            "issn": [
              "1569-8025", 
              "1572-8137"
            ], 
            "name": "Journal of Computational Electronics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "keywords": [
          "Monte Carlo method", 
          "numerical particles", 
          "quantum kinetic equation", 
          "Carlo method", 
          "resonant tunneling diodes", 
          "quantum interference", 
          "Boltzmann collision operator", 
          "quantum region", 
          "tunneling diodes", 
          "Wigner equation", 
          "carrier transport", 
          "transport calculations", 
          "classical region", 
          "device region", 
          "collision operator", 
          "Boltzmann equation", 
          "statistical weights", 
          "potential operators", 
          "numerical techniques", 
          "particle model", 
          "dissipation effects", 
          "equation simplifies", 
          "equations", 
          "kinetic equation", 
          "generation term", 
          "natural way", 
          "quantum", 
          "operators", 
          "particles", 
          "scattering", 
          "diodes", 
          "calculations", 
          "region", 
          "avalanches", 
          "simulations", 
          "simplifies", 
          "approach", 
          "solution", 
          "transport", 
          "model", 
          "method", 
          "terms", 
          "interference", 
          "technique", 
          "results", 
          "effect", 
          "way", 
          "weight"
        ], 
        "name": "A Monte Carlo Method Seamlessly Linking Quantum and Classical Transport Calculations", 
        "pagination": "147-151", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046620015"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/b:jcel.0000011416.93047.69"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/b:jcel.0000011416.93047.69", 
          "https://app.dimensions.ai/details/publication/pub.1046620015"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_370.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/b:jcel.0000011416.93047.69"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:jcel.0000011416.93047.69'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:jcel.0000011416.93047.69'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:jcel.0000011416.93047.69'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:jcel.0000011416.93047.69'


     

    This table displays all metadata directly associated to this object as RDF triples.

    124 TRIPLES      22 PREDICATES      75 URIs      66 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/b:jcel.0000011416.93047.69 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author Nda54b79583da47f487816afbb209d547
    4 schema:citation sg:pub.10.1023/a:1020799224110
    5 schema:datePublished 2003-12
    6 schema:datePublishedReg 2003-12-01
    7 schema:description A Monte Carlo method for carrier transport is presented, which simultaneously takes into account quantum interference and dissipation effects. The method solves the space-dependent Wigner equation including semi-classical scattering through the Boltzmann collision operator. To this equation a particle model is assigned, which interprets the non-local potential operator as a generation term for numerical particles of positive and negative statistical weight. A numerical technique to control the avalanche of numerical particles is discussed. Since the Wigner equation simplifies to the Boltzmann equation in classical device regions, the solutions of the quantum kinetic equation and the classical one are linked in a natural way. This approach allows the simulation of a quantum region embedded in an extended classical region. Results of this approach are demonstrated for a resonant tunneling diode.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N63f1e7514b5a4bdfb477800ab4d19544
    12 N988e1ff032ff4f60aad9d4a78aeba862
    13 sg:journal.1036340
    14 schema:keywords Boltzmann collision operator
    15 Boltzmann equation
    16 Carlo method
    17 Monte Carlo method
    18 Wigner equation
    19 approach
    20 avalanches
    21 calculations
    22 carrier transport
    23 classical region
    24 collision operator
    25 device region
    26 diodes
    27 dissipation effects
    28 effect
    29 equation simplifies
    30 equations
    31 generation term
    32 interference
    33 kinetic equation
    34 method
    35 model
    36 natural way
    37 numerical particles
    38 numerical techniques
    39 operators
    40 particle model
    41 particles
    42 potential operators
    43 quantum
    44 quantum interference
    45 quantum kinetic equation
    46 quantum region
    47 region
    48 resonant tunneling diodes
    49 results
    50 scattering
    51 simplifies
    52 simulations
    53 solution
    54 statistical weights
    55 technique
    56 terms
    57 transport
    58 transport calculations
    59 tunneling diodes
    60 way
    61 weight
    62 schema:name A Monte Carlo Method Seamlessly Linking Quantum and Classical Transport Calculations
    63 schema:pagination 147-151
    64 schema:productId N4024ae79d6f24e039c0a065ea4a5154d
    65 N89b56b9aa0c84ea7a33ba92687fe8fb5
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046620015
    67 https://doi.org/10.1023/b:jcel.0000011416.93047.69
    68 schema:sdDatePublished 2022-05-20T07:22
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher N9a90b1383f4847da9ba2a27240bd9c58
    71 schema:url https://doi.org/10.1023/b:jcel.0000011416.93047.69
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N4024ae79d6f24e039c0a065ea4a5154d schema:name doi
    76 schema:value 10.1023/b:jcel.0000011416.93047.69
    77 rdf:type schema:PropertyValue
    78 N49a9b2fffeb04bc999bba871d89daad7 rdf:first sg:person.013033344117.92
    79 rdf:rest rdf:nil
    80 N63f1e7514b5a4bdfb477800ab4d19544 schema:volumeNumber 2
    81 rdf:type schema:PublicationVolume
    82 N89b56b9aa0c84ea7a33ba92687fe8fb5 schema:name dimensions_id
    83 schema:value pub.1046620015
    84 rdf:type schema:PropertyValue
    85 N988e1ff032ff4f60aad9d4a78aeba862 schema:issueNumber 2-4
    86 rdf:type schema:PublicationIssue
    87 N9a90b1383f4847da9ba2a27240bd9c58 schema:name Springer Nature - SN SciGraph project
    88 rdf:type schema:Organization
    89 Nab8304fd7c0d4971b80b47c69fa9209b rdf:first sg:person.011142023427.48
    90 rdf:rest N49a9b2fffeb04bc999bba871d89daad7
    91 Nda54b79583da47f487816afbb209d547 rdf:first sg:person.016550513317.72
    92 rdf:rest Nab8304fd7c0d4971b80b47c69fa9209b
    93 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Physical Sciences
    95 rdf:type schema:DefinedTerm
    96 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    98 rdf:type schema:DefinedTerm
    99 sg:journal.1036340 schema:issn 1569-8025
    100 1572-8137
    101 schema:name Journal of Computational Electronics
    102 schema:publisher Springer Nature
    103 rdf:type schema:Periodical
    104 sg:person.011142023427.48 schema:affiliation grid-institutes:grid.5329.d
    105 schema:familyName Nedjalkov
    106 schema:givenName M.
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48
    108 rdf:type schema:Person
    109 sg:person.013033344117.92 schema:affiliation grid-institutes:grid.5329.d
    110 schema:familyName Selberherr
    111 schema:givenName S.
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92
    113 rdf:type schema:Person
    114 sg:person.016550513317.72 schema:affiliation grid-institutes:grid.5329.d
    115 schema:familyName Kosina
    116 schema:givenName H.
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016550513317.72
    118 rdf:type schema:Person
    119 sg:pub.10.1023/a:1020799224110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013940672
    120 https://doi.org/10.1023/a:1020799224110
    121 rdf:type schema:CreativeWork
    122 grid-institutes:grid.5329.d schema:alternateName Institute for Microelectronics, TU Vienna, Gusshausstr 27–29, A-1040, Vienna, Austria
    123 schema:name Institute for Microelectronics, TU Vienna, Gusshausstr 27–29, A-1040, Vienna, Austria
    124 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...