Zero-Flux Plane Kinetics at Multicomponent Interfaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-04

AUTHORS

M.E. Glicksman, A.O. Lupulescu

ABSTRACT

Zero flux planes (ZFP's) are the locations in a diffusion couple where fluxes of individual components vanish. The conditions required for developing ZFP's between interdiffusing multicomponent alloys are now well understood through the works of Dayananda and Morral. In this paper we analyze the kinetics of multicomponent diffusion near ZFP's. In contrast to the usual mixing that occurs between end-member alloys in a diffusion couple, where the average component compositions are approached through “global” exchange of atoms, the presence of a stationary ZFP requires instead that mixing of the blocked component occurs through the release of a pair of coupled diffusion waves. In classical (thick) couples these waves spread symmetrically away from the Matano plane. The wave pair consists of a “depletion” wave that reduces the blocked component concentration in the component-rich alloy, and a conjugate “repletion” wave that increases the concentration in the adjacent component-poor alloy. Curiously, each of these waves establishes the average (equilibrium) concentration unilaterally on either side of the Matano plane. A stationary ZFP precludes net transport of one component across the Matano plane—a circumstance that has practical and theoretically interesting implications for the design of stable multicomponent films and coatings that must resist diffusive loss of a component. More... »

PAGES

327-334

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/b:ints.0000028662.52817.04

DOI

http://dx.doi.org/10.1023/b:ints.0000028662.52817.04

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033039102


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.33647.35", 
          "name": [
            "Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glicksman", 
        "givenName": "M.E.", 
        "id": "sg:person.010720014261.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.33647.35", 
          "name": [
            "Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lupulescu", 
        "givenName": "A.O.", 
        "id": "sg:person.011367070357.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011367070357.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02666665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020552571", 
          "https://doi.org/10.1007/bf02666665"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-04", 
    "datePublishedReg": "2004-04-01", 
    "description": "Zero flux planes (ZFP's) are the locations in a diffusion couple where fluxes of individual components vanish. The conditions required for developing ZFP's between interdiffusing multicomponent alloys are now well understood through the works of Dayananda and Morral. In this paper we analyze the kinetics of multicomponent diffusion near ZFP's. In contrast to the usual mixing that occurs between end-member alloys in a diffusion couple, where the average component compositions are approached through \u201cglobal\u201d exchange of atoms, the presence of a stationary ZFP requires instead that mixing of the blocked component occurs through the release of a pair of coupled diffusion waves. In classical (thick) couples these waves spread symmetrically away from the Matano plane. The wave pair consists of a \u201cdepletion\u201d wave that reduces the blocked component concentration in the component-rich alloy, and a conjugate \u201crepletion\u201d wave that increases the concentration in the adjacent component-poor alloy. Curiously, each of these waves establishes the average (equilibrium) concentration unilaterally on either side of the Matano plane. A stationary ZFP precludes net transport of one component across the Matano plane\u2014a circumstance that has practical and theoretically interesting implications for the design of stable multicomponent films and coatings that must resist diffusive loss of a component.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/b:ints.0000028662.52817.04", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1141575", 
        "issn": [
          "0927-7056", 
          "1573-2746"
        ], 
        "name": "Interface Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "exchange of atoms", 
      "diffusion couples", 
      "usual mixing", 
      "Matano plane", 
      "wave pairs", 
      "multicomponent films", 
      "multicomponent alloys", 
      "waves", 
      "diffusion waves", 
      "multicomponent interfaces", 
      "flux plane", 
      "alloy", 
      "multicomponent diffusion", 
      "plane", 
      "interesting implications", 
      "diffusive loss", 
      "atoms", 
      "component concentrations", 
      "net transport", 
      "films", 
      "coatings", 
      "mixing", 
      "flux", 
      "pairs", 
      "kinetics", 
      "Morral", 
      "Dayananda", 
      "interface", 
      "component composition", 
      "individual components", 
      "diffusion", 
      "components", 
      "design", 
      "transport", 
      "average concentration", 
      "concentration", 
      "conditions", 
      "ZFP", 
      "work", 
      "couples", 
      "composition", 
      "side", 
      "location", 
      "exchange", 
      "loss", 
      "contrast", 
      "presence", 
      "release", 
      "depletion", 
      "paper", 
      "circumstances", 
      "implications", 
      "conjugates", 
      "repletion"
    ], 
    "name": "Zero-Flux Plane Kinetics at Multicomponent Interfaces", 
    "pagination": "327-334", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033039102"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/b:ints.0000028662.52817.04"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/b:ints.0000028662.52817.04", 
      "https://app.dimensions.ai/details/publication/pub.1033039102"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_390.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/b:ints.0000028662.52817.04"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:ints.0000028662.52817.04'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:ints.0000028662.52817.04'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:ints.0000028662.52817.04'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:ints.0000028662.52817.04'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      22 PREDICATES      81 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/b:ints.0000028662.52817.04 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N2c9b859afbbf44e1906b2d71384bad61
4 schema:citation sg:pub.10.1007/bf02666665
5 schema:datePublished 2004-04
6 schema:datePublishedReg 2004-04-01
7 schema:description Zero flux planes (ZFP's) are the locations in a diffusion couple where fluxes of individual components vanish. The conditions required for developing ZFP's between interdiffusing multicomponent alloys are now well understood through the works of Dayananda and Morral. In this paper we analyze the kinetics of multicomponent diffusion near ZFP's. In contrast to the usual mixing that occurs between end-member alloys in a diffusion couple, where the average component compositions are approached through “global” exchange of atoms, the presence of a stationary ZFP requires instead that mixing of the blocked component occurs through the release of a pair of coupled diffusion waves. In classical (thick) couples these waves spread symmetrically away from the Matano plane. The wave pair consists of a “depletion” wave that reduces the blocked component concentration in the component-rich alloy, and a conjugate “repletion” wave that increases the concentration in the adjacent component-poor alloy. Curiously, each of these waves establishes the average (equilibrium) concentration unilaterally on either side of the Matano plane. A stationary ZFP precludes net transport of one component across the Matano plane—a circumstance that has practical and theoretically interesting implications for the design of stable multicomponent films and coatings that must resist diffusive loss of a component.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1d26fc5321944a93be173b2a2ac3df65
12 Ne14a835130ff4054b4f4c48e76f9a486
13 sg:journal.1141575
14 schema:keywords Dayananda
15 Matano plane
16 Morral
17 ZFP
18 alloy
19 atoms
20 average concentration
21 circumstances
22 coatings
23 component composition
24 component concentrations
25 components
26 composition
27 concentration
28 conditions
29 conjugates
30 contrast
31 couples
32 depletion
33 design
34 diffusion
35 diffusion couples
36 diffusion waves
37 diffusive loss
38 exchange
39 exchange of atoms
40 films
41 flux
42 flux plane
43 implications
44 individual components
45 interesting implications
46 interface
47 kinetics
48 location
49 loss
50 mixing
51 multicomponent alloys
52 multicomponent diffusion
53 multicomponent films
54 multicomponent interfaces
55 net transport
56 pairs
57 paper
58 plane
59 presence
60 release
61 repletion
62 side
63 transport
64 usual mixing
65 wave pairs
66 waves
67 work
68 schema:name Zero-Flux Plane Kinetics at Multicomponent Interfaces
69 schema:pagination 327-334
70 schema:productId N08129d87693b4a94945a6453d507fd8e
71 N2fc55ca4870749bebec93cadf4e53bdc
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033039102
73 https://doi.org/10.1023/b:ints.0000028662.52817.04
74 schema:sdDatePublished 2022-06-01T22:05
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N67a4b270392c4f92ae8a4be8f1919df0
77 schema:url https://doi.org/10.1023/b:ints.0000028662.52817.04
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N08129d87693b4a94945a6453d507fd8e schema:name doi
82 schema:value 10.1023/b:ints.0000028662.52817.04
83 rdf:type schema:PropertyValue
84 N1d26fc5321944a93be173b2a2ac3df65 schema:volumeNumber 12
85 rdf:type schema:PublicationVolume
86 N2c9b859afbbf44e1906b2d71384bad61 rdf:first sg:person.010720014261.43
87 rdf:rest Nf175bb4326c34de984c7253bd746e12e
88 N2fc55ca4870749bebec93cadf4e53bdc schema:name dimensions_id
89 schema:value pub.1033039102
90 rdf:type schema:PropertyValue
91 N67a4b270392c4f92ae8a4be8f1919df0 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Ne14a835130ff4054b4f4c48e76f9a486 schema:issueNumber 2-3
94 rdf:type schema:PublicationIssue
95 Nf175bb4326c34de984c7253bd746e12e rdf:first sg:person.011367070357.14
96 rdf:rest rdf:nil
97 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
98 schema:name Engineering
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
101 schema:name Materials Engineering
102 rdf:type schema:DefinedTerm
103 sg:journal.1141575 schema:issn 0927-7056
104 1573-2746
105 schema:name Interface Science
106 schema:publisher Springer Nature
107 rdf:type schema:Periodical
108 sg:person.010720014261.43 schema:affiliation grid-institutes:grid.33647.35
109 schema:familyName Glicksman
110 schema:givenName M.E.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43
112 rdf:type schema:Person
113 sg:person.011367070357.14 schema:affiliation grid-institutes:grid.33647.35
114 schema:familyName Lupulescu
115 schema:givenName A.O.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011367070357.14
117 rdf:type schema:Person
118 sg:pub.10.1007/bf02666665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020552571
119 https://doi.org/10.1007/bf02666665
120 rdf:type schema:CreativeWork
121 grid-institutes:grid.33647.35 schema:alternateName Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, New York, USA
122 schema:name Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 12180-3590, Troy, New York, USA
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...