Minimal Coupling of the Kalb–Ramond Field to a Scalar Field View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-02

AUTHORS

E. Di Grezia, S. Esposito

ABSTRACT

We study the direct interaction of an antisymmetric Kalb–Ramond field with a scalar particle derived from a gauge principle. The method outlined in this paper to define a covariant derivative is applied to a simple model leading to a linear coupling between the fields. Although no conserved Noether charge exists, a conserved topological current comes out from the antisymmetry properties of the Kalb–Ramond field. Some interesting features of this current are pointed out. Possible applications of our results to cosmology and to the theory of three-dimensional Josephson junction arrays are envisaged. More... »

PAGES

445-456

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/b:ijtp.0000028877.38700.c5

DOI

http://dx.doi.org/10.1023/b:ijtp.0000028877.38700.c5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011982726


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Naples Federico II", 
          "id": "https://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "Dipartimento di Scienze Fisiche, Universit\u00e1 di Napoli \u201cFederico II,\u201d, Napoli, Italy", 
            "Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Di Grezia", 
        "givenName": "E.", 
        "id": "sg:person.016336652751.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016336652751.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Naples Federico II", 
          "id": "https://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "Dipartimento di Scienze Fisiche, Universit\u00e1 di Napoli \u201cFederico II,\u201d, Napoli, Italy", 
            "Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Esposito", 
        "givenName": "S.", 
        "id": "sg:person.011537452143.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537452143.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s002200050468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005091405", 
          "https://doi.org/10.1007/s002200050468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(96)00309-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005869541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(01)00785-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013419286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.65.085010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016431572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.65.085010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016431572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100520100872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019305685", 
          "https://doi.org/10.1007/s100520100872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(80)90852-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023346567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(80)90852-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023346567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(74)90224-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025031361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(74)90224-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025031361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(90)91162-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031661673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(90)91162-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031661673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(92)90632-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034389729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(92)90632-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034389729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(95)00252-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037028154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(01)01238-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038403645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.62.123504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038804047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.62.123504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038804047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.59.063503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041274328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.59.063503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041274328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2002/06/049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044462065", 
          "https://doi.org/10.1088/1126-6708/2002/06/049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(90)91163-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045846473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(90)91163-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045846473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2002/05/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053584273", 
          "https://doi.org/10.1088/1126-6708/2002/05/015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.42.4748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060555521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.42.4748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060555521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.26.1443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060689831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.26.1443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060689831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.29.1709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060691145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.29.1709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060691145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.34.3242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060694143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.34.3242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060694143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.37.2872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060695646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.37.2872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060695646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.46.5421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060700863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.46.5421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060700863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.47.3639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060701192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.47.3639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060701192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.9.2273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060709359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.9.2273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060709359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217732302006151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062912503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217732391000580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062918152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217751x94000704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062930085"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-02", 
    "datePublishedReg": "2004-02-01", 
    "description": "We study the direct interaction of an antisymmetric Kalb\u2013Ramond field with a scalar particle derived from a gauge principle. The method outlined in this paper to define a covariant derivative is applied to a simple model leading to a linear coupling between the fields. Although no conserved Noether charge exists, a conserved topological current comes out from the antisymmetry properties of the Kalb\u2013Ramond field. Some interesting features of this current are pointed out. Possible applications of our results to cosmology and to the theory of three-dimensional Josephson junction arrays are envisaged.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/b:ijtp.0000028877.38700.c5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053677", 
        "issn": [
          "0020-7748", 
          "1572-9575"
        ], 
        "name": "International Journal of Theoretical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "name": "Minimal Coupling of the Kalb\u2013Ramond Field to a Scalar Field", 
    "pagination": "445-456", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "39179feb0efb74b1b782b92d6218acf8f7e25339c8519fd281355a5924eccbe7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/b:ijtp.0000028877.38700.c5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011982726"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/b:ijtp.0000028877.38700.c5", 
      "https://app.dimensions.ai/details/publication/pub.1011982726"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FB%3AIJTP.0000028877.38700.c5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:ijtp.0000028877.38700.c5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:ijtp.0000028877.38700.c5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:ijtp.0000028877.38700.c5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:ijtp.0000028877.38700.c5'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/b:ijtp.0000028877.38700.c5 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nf460e87b80fe4c38bef8694ff6086a5b
4 schema:citation sg:pub.10.1007/s002200050468
5 sg:pub.10.1007/s100520100872
6 sg:pub.10.1088/1126-6708/2002/05/015
7 sg:pub.10.1088/1126-6708/2002/06/049
8 https://doi.org/10.1016/0370-2693(80)90852-7
9 https://doi.org/10.1016/0370-2693(90)91162-5
10 https://doi.org/10.1016/0370-2693(90)91163-6
11 https://doi.org/10.1016/0550-3213(74)90224-7
12 https://doi.org/10.1016/0550-3213(92)90632-l
13 https://doi.org/10.1016/0550-3213(95)00252-n
14 https://doi.org/10.1016/0550-3213(96)00309-4
15 https://doi.org/10.1016/s0370-2693(01)00785-7
16 https://doi.org/10.1016/s0370-2693(01)01238-2
17 https://doi.org/10.1103/physrevb.42.4748
18 https://doi.org/10.1103/physrevd.26.1443
19 https://doi.org/10.1103/physrevd.29.1709
20 https://doi.org/10.1103/physrevd.34.3242
21 https://doi.org/10.1103/physrevd.37.2872
22 https://doi.org/10.1103/physrevd.46.5421
23 https://doi.org/10.1103/physrevd.47.3639
24 https://doi.org/10.1103/physrevd.59.063503
25 https://doi.org/10.1103/physrevd.62.123504
26 https://doi.org/10.1103/physrevd.65.085010
27 https://doi.org/10.1103/physrevd.9.2273
28 https://doi.org/10.1142/s0217732302006151
29 https://doi.org/10.1142/s0217732391000580
30 https://doi.org/10.1142/s0217751x94000704
31 schema:datePublished 2004-02
32 schema:datePublishedReg 2004-02-01
33 schema:description We study the direct interaction of an antisymmetric Kalb–Ramond field with a scalar particle derived from a gauge principle. The method outlined in this paper to define a covariant derivative is applied to a simple model leading to a linear coupling between the fields. Although no conserved Noether charge exists, a conserved topological current comes out from the antisymmetry properties of the Kalb–Ramond field. Some interesting features of this current are pointed out. Possible applications of our results to cosmology and to the theory of three-dimensional Josephson junction arrays are envisaged.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N13ce27640b0f4b58944efa80b0c6033f
38 N81b689dae00e419a8060f7a9c4dc517f
39 sg:journal.1053677
40 schema:name Minimal Coupling of the Kalb–Ramond Field to a Scalar Field
41 schema:pagination 445-456
42 schema:productId N09c953da988447829ed2135563cce0c9
43 N6ab436a2273146f4a52d7f00c401039d
44 Nbcf3a2fff3b7434497dcde7fba0c9b68
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011982726
46 https://doi.org/10.1023/b:ijtp.0000028877.38700.c5
47 schema:sdDatePublished 2019-04-10T19:06
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N3ac2af60a6de49148d373f8821252b20
50 schema:url http://link.springer.com/10.1023%2FB%3AIJTP.0000028877.38700.c5
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N09c953da988447829ed2135563cce0c9 schema:name dimensions_id
55 schema:value pub.1011982726
56 rdf:type schema:PropertyValue
57 N13ce27640b0f4b58944efa80b0c6033f schema:issueNumber 2
58 rdf:type schema:PublicationIssue
59 N3ac2af60a6de49148d373f8821252b20 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N6ab436a2273146f4a52d7f00c401039d schema:name doi
62 schema:value 10.1023/b:ijtp.0000028877.38700.c5
63 rdf:type schema:PropertyValue
64 N81b689dae00e419a8060f7a9c4dc517f schema:volumeNumber 43
65 rdf:type schema:PublicationVolume
66 Nbcf3a2fff3b7434497dcde7fba0c9b68 schema:name readcube_id
67 schema:value 39179feb0efb74b1b782b92d6218acf8f7e25339c8519fd281355a5924eccbe7
68 rdf:type schema:PropertyValue
69 Nd90d1d82cdbd4ce284667ef07a404a94 rdf:first sg:person.011537452143.52
70 rdf:rest rdf:nil
71 Nf460e87b80fe4c38bef8694ff6086a5b rdf:first sg:person.016336652751.46
72 rdf:rest Nd90d1d82cdbd4ce284667ef07a404a94
73 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
74 schema:name Chemical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
77 schema:name Physical Chemistry (incl. Structural)
78 rdf:type schema:DefinedTerm
79 sg:journal.1053677 schema:issn 0020-7748
80 1572-9575
81 schema:name International Journal of Theoretical Physics
82 rdf:type schema:Periodical
83 sg:person.011537452143.52 schema:affiliation https://www.grid.ac/institutes/grid.4691.a
84 schema:familyName Esposito
85 schema:givenName S.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537452143.52
87 rdf:type schema:Person
88 sg:person.016336652751.46 schema:affiliation https://www.grid.ac/institutes/grid.4691.a
89 schema:familyName Di Grezia
90 schema:givenName E.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016336652751.46
92 rdf:type schema:Person
93 sg:pub.10.1007/s002200050468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005091405
94 https://doi.org/10.1007/s002200050468
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s100520100872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019305685
97 https://doi.org/10.1007/s100520100872
98 rdf:type schema:CreativeWork
99 sg:pub.10.1088/1126-6708/2002/05/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053584273
100 https://doi.org/10.1088/1126-6708/2002/05/015
101 rdf:type schema:CreativeWork
102 sg:pub.10.1088/1126-6708/2002/06/049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044462065
103 https://doi.org/10.1088/1126-6708/2002/06/049
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0370-2693(80)90852-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023346567
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0370-2693(90)91162-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031661673
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0370-2693(90)91163-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045846473
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0550-3213(74)90224-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025031361
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0550-3213(92)90632-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1034389729
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0550-3213(95)00252-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1037028154
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0550-3213(96)00309-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005869541
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0370-2693(01)00785-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013419286
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0370-2693(01)01238-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038403645
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevb.42.4748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060555521
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevd.26.1443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060689831
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevd.29.1709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060691145
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevd.34.3242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060694143
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevd.37.2872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060695646
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevd.46.5421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060700863
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevd.47.3639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060701192
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevd.59.063503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041274328
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevd.62.123504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038804047
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevd.65.085010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016431572
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevd.9.2273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060709359
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1142/s0217732302006151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062912503
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1142/s0217732391000580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062918152
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1142/s0217751x94000704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062930085
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.4691.a schema:alternateName University of Naples Federico II
152 schema:name Dipartimento di Scienze Fisiche, Universitá di Napoli “Federico II,”, Napoli, Italy
153 Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...