Nonrelativistic Green's Function for Systems with Position-Dependent Mass View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-12

AUTHORS

A. D. Alhaidari

ABSTRACT

Given a spatially dependent mass, we obtain the 2-point Green's function for exactly solvable nonrelativistic problems. This is accomplished by mapping the wave equation for these systems into well-known exactly solvable Schrödinger equations with constant mass using point canonical transformation. The one-dimensional oscillator class is considered and examples are given for several mass distributions. More... »

PAGES

2999-3009

References to SciGraph publications

  • 1962-08. A class of solvable potentials in IL NUOVO CIMENTO (1955-1965)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/b:ijtp.0000006027.49538.16

    DOI

    http://dx.doi.org/10.1023/b:ijtp.0000006027.49538.16

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1005912238


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Physics Department, King Fahd University of Petroleum & Minerals, Box 5047, 31261, Dhahran, Saudi Arabia", 
              "id": "http://www.grid.ac/institutes/grid.412135.0", 
              "name": [
                "Physics Department, King Fahd University of Petroleum & Minerals, Box 5047, 31261, Dhahran, Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alhaidari", 
            "givenName": "A. D.", 
            "id": "sg:person.010122155242.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010122155242.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02733153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011267969", 
              "https://doi.org/10.1007/bf02733153"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-12", 
        "datePublishedReg": "2003-12-01", 
        "description": "Given a spatially dependent mass, we obtain the 2-point Green's function for exactly solvable nonrelativistic problems. This is accomplished by mapping the wave equation for these systems into well-known exactly solvable Schr\u00f6dinger equations with constant mass using point canonical transformation. The one-dimensional oscillator class is considered and examples are given for several mass distributions.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/b:ijtp.0000006027.49538.16", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1053677", 
            "issn": [
              "0020-7748", 
              "1572-9575"
            ], 
            "name": "International Journal of Theoretical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "42"
          }
        ], 
        "keywords": [
          "Green's function", 
          "solvable Schr\u00f6dinger equations", 
          "nonrelativistic Green's function", 
          "wave equation", 
          "position-dependent mass", 
          "point canonical transformation", 
          "Schr\u00f6dinger equation", 
          "canonical transformation", 
          "dependent mass", 
          "nonrelativistic problem", 
          "equations", 
          "constant mass", 
          "mass distribution", 
          "function", 
          "problem", 
          "system", 
          "class", 
          "distribution", 
          "mass", 
          "transformation", 
          "example"
        ], 
        "name": "Nonrelativistic Green's Function for Systems with Position-Dependent Mass", 
        "pagination": "2999-3009", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1005912238"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/b:ijtp.0000006027.49538.16"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/b:ijtp.0000006027.49538.16", 
          "https://app.dimensions.ai/details/publication/pub.1005912238"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_369.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/b:ijtp.0000006027.49538.16"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:ijtp.0000006027.49538.16'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:ijtp.0000006027.49538.16'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:ijtp.0000006027.49538.16'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:ijtp.0000006027.49538.16'


     

    This table displays all metadata directly associated to this object as RDF triples.

    83 TRIPLES      22 PREDICATES      48 URIs      39 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/b:ijtp.0000006027.49538.16 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N20d027f1a6dd4682bc1456d8e56062d9
    4 schema:citation sg:pub.10.1007/bf02733153
    5 schema:datePublished 2003-12
    6 schema:datePublishedReg 2003-12-01
    7 schema:description Given a spatially dependent mass, we obtain the 2-point Green's function for exactly solvable nonrelativistic problems. This is accomplished by mapping the wave equation for these systems into well-known exactly solvable Schrödinger equations with constant mass using point canonical transformation. The one-dimensional oscillator class is considered and examples are given for several mass distributions.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree true
    11 schema:isPartOf Nabfcb4deff55439ba38cdd56acc8398f
    12 Ncac3ff1a1ce44cbcb216ca8e1c2cb8f0
    13 sg:journal.1053677
    14 schema:keywords Green's function
    15 Schrödinger equation
    16 canonical transformation
    17 class
    18 constant mass
    19 dependent mass
    20 distribution
    21 equations
    22 example
    23 function
    24 mass
    25 mass distribution
    26 nonrelativistic Green's function
    27 nonrelativistic problem
    28 point canonical transformation
    29 position-dependent mass
    30 problem
    31 solvable Schrödinger equations
    32 system
    33 transformation
    34 wave equation
    35 schema:name Nonrelativistic Green's Function for Systems with Position-Dependent Mass
    36 schema:pagination 2999-3009
    37 schema:productId N237d5b6c9e214bb5a79df8f1c8ae3845
    38 Nb22af83965144153a3b29f4fa3ab5895
    39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005912238
    40 https://doi.org/10.1023/b:ijtp.0000006027.49538.16
    41 schema:sdDatePublished 2022-05-20T07:22
    42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    43 schema:sdPublisher Na5f7f0d05a6d4a3ead701d6dca6b33c0
    44 schema:url https://doi.org/10.1023/b:ijtp.0000006027.49538.16
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset articles
    47 rdf:type schema:ScholarlyArticle
    48 N20d027f1a6dd4682bc1456d8e56062d9 rdf:first sg:person.010122155242.02
    49 rdf:rest rdf:nil
    50 N237d5b6c9e214bb5a79df8f1c8ae3845 schema:name dimensions_id
    51 schema:value pub.1005912238
    52 rdf:type schema:PropertyValue
    53 Na5f7f0d05a6d4a3ead701d6dca6b33c0 schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 Nabfcb4deff55439ba38cdd56acc8398f schema:volumeNumber 42
    56 rdf:type schema:PublicationVolume
    57 Nb22af83965144153a3b29f4fa3ab5895 schema:name doi
    58 schema:value 10.1023/b:ijtp.0000006027.49538.16
    59 rdf:type schema:PropertyValue
    60 Ncac3ff1a1ce44cbcb216ca8e1c2cb8f0 schema:issueNumber 12
    61 rdf:type schema:PublicationIssue
    62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Mathematical Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Pure Mathematics
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1053677 schema:issn 0020-7748
    69 1572-9575
    70 schema:name International Journal of Theoretical Physics
    71 schema:publisher Springer Nature
    72 rdf:type schema:Periodical
    73 sg:person.010122155242.02 schema:affiliation grid-institutes:grid.412135.0
    74 schema:familyName Alhaidari
    75 schema:givenName A. D.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010122155242.02
    77 rdf:type schema:Person
    78 sg:pub.10.1007/bf02733153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011267969
    79 https://doi.org/10.1007/bf02733153
    80 rdf:type schema:CreativeWork
    81 grid-institutes:grid.412135.0 schema:alternateName Physics Department, King Fahd University of Petroleum & Minerals, Box 5047, 31261, Dhahran, Saudi Arabia
    82 schema:name Physics Department, King Fahd University of Petroleum & Minerals, Box 5047, 31261, Dhahran, Saudi Arabia
    83 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...