Estimating Procedure Times for Surgeries by Determining Location Parameters for the Lognormal Model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-05

AUTHORS

William E. Spangler, David P. Strum, Luis G. Vargas, Jerrold H. May

ABSTRACT

We present an empirical study of methods for estimating the location parameter of the lognormal distribution. Our results identify the best order statistic to use, and indicate that using the best order statistic instead of the median may lead to less frequent incorrect rejection of the lognormal model, more accurate critical value estimates, and higher goodness-of-fit. Using simulation data, we constructed and compared two models for identifying the best order statistic, one based on conventional nonlinear regression and the other using a data mining/machine learning technique. Better surgical procedure time estimates may lead to improved surgical operations. More... »

PAGES

97-104

References to SciGraph publications

  • 2001-12. Scheduling Emergency Room Physicians in HEALTH CARE MANAGEMENT SCIENCE
  • 1999-03. Improving on‐time performance in health care organizations: a case study in HEALTH CARE MANAGEMENT SCIENCE
  • 2000-06. A mathematical programming approach for scheduling physicians in the emergency room in HEALTH CARE MANAGEMENT SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/b:hcms.0000020649.78458.98

    DOI

    http://dx.doi.org/10.1023/b:hcms.0000020649.78458.98

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034803467

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/15152974


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Statistical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surgical Procedures, Operative", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "A.J. Palumbo School of Business Administration, Duquesne University, Pittsburgh, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.255272.5", 
              "name": [
                "A.J. Palumbo School of Business Administration, Duquesne University, Pittsburgh, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Spangler", 
            "givenName": "William E.", 
            "id": "sg:person.011702016227.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011702016227.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Anesthesiology, Queen's University, Kingston General Hospital, Kingston, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.415354.2", 
              "name": [
                "Department of Anesthesiology, Queen's University, Kingston General Hospital, Kingston, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Strum", 
            "givenName": "David P.", 
            "id": "sg:person.0774605063.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774605063.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Joseph M. Katz Graduate School of Business, University of Pittsburgh, Pittsburgh, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.21925.3d", 
              "name": [
                "Joseph M. Katz Graduate School of Business, University of Pittsburgh, Pittsburgh, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vargas", 
            "givenName": "Luis G.", 
            "id": "sg:person.013723757207.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013723757207.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Joseph M. Katz Graduate School of Business, University of Pittsburgh, Pittsburgh, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.21925.3d", 
              "name": [
                "Joseph M. Katz Graduate School of Business, University of Pittsburgh, Pittsburgh, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "May", 
            "givenName": "Jerrold H.", 
            "id": "sg:person.013113501215.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113501215.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1019059022128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051374333", 
              "https://doi.org/10.1023/a:1019059022128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1019009928005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009036466", 
              "https://doi.org/10.1023/a:1019009928005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1011802630656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048645446", 
              "https://doi.org/10.1023/a:1011802630656"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-05", 
        "datePublishedReg": "2004-05-01", 
        "description": "We present an empirical study of methods for estimating the location parameter of the lognormal distribution. Our results identify the best order statistic to use, and indicate that using the best order statistic instead of the median may lead to less frequent incorrect rejection of the lognormal model, more accurate critical value estimates, and higher goodness-of-fit. Using simulation data, we constructed and compared two models for identifying the best order statistic, one based on conventional nonlinear regression and the other using a data mining/machine learning technique. Better surgical procedure time estimates may lead to improved surgical operations.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/b:hcms.0000020649.78458.98", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1119244", 
            "issn": [
              "1386-9620", 
              "1572-9389"
            ], 
            "name": "Health Care Management Science", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "value estimates", 
          "lognormal model", 
          "empirical study", 
          "high goodness", 
          "incorrect rejection", 
          "estimates", 
          "lognormal distribution", 
          "location parameter", 
          "model", 
          "statistics", 
          "nonlinear regression", 
          "regression", 
          "order statistics", 
          "goodness", 
          "machine learning techniques", 
          "data", 
          "fit", 
          "time estimates", 
          "distribution", 
          "results", 
          "learning techniques", 
          "simulation data", 
          "time", 
          "study", 
          "operation", 
          "parameters", 
          "method", 
          "median", 
          "rejection", 
          "technique", 
          "surgical operation", 
          "surgery", 
          "procedure time"
        ], 
        "name": "Estimating Procedure Times for Surgeries by Determining Location Parameters for the Lognormal Model", 
        "pagination": "97-104", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034803467"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/b:hcms.0000020649.78458.98"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "15152974"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/b:hcms.0000020649.78458.98", 
          "https://app.dimensions.ai/details/publication/pub.1034803467"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_390.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/b:hcms.0000020649.78458.98"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:hcms.0000020649.78458.98'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:hcms.0000020649.78458.98'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:hcms.0000020649.78458.98'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:hcms.0000020649.78458.98'


     

    This table displays all metadata directly associated to this object as RDF triples.

    149 TRIPLES      21 PREDICATES      66 URIs      55 LITERALS      11 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/b:hcms.0000020649.78458.98 schema:about N0572e04a687b458cbb9e3e68fa895e57
    2 N72f78790ce174021a8f1297c1aeb02e9
    3 Nc0f300608fb04589a912322b1d6613fc
    4 Nda166ed485794782a61c9f663f3f9875
    5 anzsrc-for:11
    6 anzsrc-for:1117
    7 schema:author Neae4c92c55ce4b99a60c84fed5855de9
    8 schema:citation sg:pub.10.1023/a:1011802630656
    9 sg:pub.10.1023/a:1019009928005
    10 sg:pub.10.1023/a:1019059022128
    11 schema:datePublished 2004-05
    12 schema:datePublishedReg 2004-05-01
    13 schema:description We present an empirical study of methods for estimating the location parameter of the lognormal distribution. Our results identify the best order statistic to use, and indicate that using the best order statistic instead of the median may lead to less frequent incorrect rejection of the lognormal model, more accurate critical value estimates, and higher goodness-of-fit. Using simulation data, we constructed and compared two models for identifying the best order statistic, one based on conventional nonlinear regression and the other using a data mining/machine learning technique. Better surgical procedure time estimates may lead to improved surgical operations.
    14 schema:genre article
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N2077f0e0b487453dbb6767615bd1a50f
    17 Nf9ba2e5260f94d7e8705305a9e383fea
    18 sg:journal.1119244
    19 schema:keywords data
    20 distribution
    21 empirical study
    22 estimates
    23 fit
    24 goodness
    25 high goodness
    26 incorrect rejection
    27 learning techniques
    28 location parameter
    29 lognormal distribution
    30 lognormal model
    31 machine learning techniques
    32 median
    33 method
    34 model
    35 nonlinear regression
    36 operation
    37 order statistics
    38 parameters
    39 procedure time
    40 regression
    41 rejection
    42 results
    43 simulation data
    44 statistics
    45 study
    46 surgery
    47 surgical operation
    48 technique
    49 time
    50 time estimates
    51 value estimates
    52 schema:name Estimating Procedure Times for Surgeries by Determining Location Parameters for the Lognormal Model
    53 schema:pagination 97-104
    54 schema:productId N68e987f266774570bc1cc621963eebce
    55 N721e3bbae9594ff1b99e90b37523ec25
    56 Nd06d738bc5ab4ae3af2fb7db413da6e8
    57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034803467
    58 https://doi.org/10.1023/b:hcms.0000020649.78458.98
    59 schema:sdDatePublished 2022-12-01T06:24
    60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    61 schema:sdPublisher N7494166baa5f456bad34ad2fdd860388
    62 schema:url https://doi.org/10.1023/b:hcms.0000020649.78458.98
    63 sgo:license sg:explorer/license/
    64 sgo:sdDataset articles
    65 rdf:type schema:ScholarlyArticle
    66 N0572e04a687b458cbb9e3e68fa895e57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    67 schema:name Surgical Procedures, Operative
    68 rdf:type schema:DefinedTerm
    69 N2077f0e0b487453dbb6767615bd1a50f schema:volumeNumber 7
    70 rdf:type schema:PublicationVolume
    71 N31bf172efee64e81bd26ec56af7a175a rdf:first sg:person.013113501215.34
    72 rdf:rest rdf:nil
    73 N5a679c640d674bec90250b5c15003452 rdf:first sg:person.013723757207.56
    74 rdf:rest N31bf172efee64e81bd26ec56af7a175a
    75 N68e987f266774570bc1cc621963eebce schema:name dimensions_id
    76 schema:value pub.1034803467
    77 rdf:type schema:PropertyValue
    78 N721e3bbae9594ff1b99e90b37523ec25 schema:name pubmed_id
    79 schema:value 15152974
    80 rdf:type schema:PropertyValue
    81 N72f78790ce174021a8f1297c1aeb02e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Humans
    83 rdf:type schema:DefinedTerm
    84 N7494166baa5f456bad34ad2fdd860388 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 Nc0f300608fb04589a912322b1d6613fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Models, Statistical
    88 rdf:type schema:DefinedTerm
    89 Nd06d738bc5ab4ae3af2fb7db413da6e8 schema:name doi
    90 schema:value 10.1023/b:hcms.0000020649.78458.98
    91 rdf:type schema:PropertyValue
    92 Nda166ed485794782a61c9f663f3f9875 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Time Factors
    94 rdf:type schema:DefinedTerm
    95 Neae4c92c55ce4b99a60c84fed5855de9 rdf:first sg:person.011702016227.07
    96 rdf:rest Nf025c18d16b143a8909a8e862ae674db
    97 Nf025c18d16b143a8909a8e862ae674db rdf:first sg:person.0774605063.24
    98 rdf:rest N5a679c640d674bec90250b5c15003452
    99 Nf9ba2e5260f94d7e8705305a9e383fea schema:issueNumber 2
    100 rdf:type schema:PublicationIssue
    101 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Medical and Health Sciences
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Public Health and Health Services
    106 rdf:type schema:DefinedTerm
    107 sg:journal.1119244 schema:issn 1386-9620
    108 1572-9389
    109 schema:name Health Care Management Science
    110 schema:publisher Springer Nature
    111 rdf:type schema:Periodical
    112 sg:person.011702016227.07 schema:affiliation grid-institutes:grid.255272.5
    113 schema:familyName Spangler
    114 schema:givenName William E.
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011702016227.07
    116 rdf:type schema:Person
    117 sg:person.013113501215.34 schema:affiliation grid-institutes:grid.21925.3d
    118 schema:familyName May
    119 schema:givenName Jerrold H.
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113501215.34
    121 rdf:type schema:Person
    122 sg:person.013723757207.56 schema:affiliation grid-institutes:grid.21925.3d
    123 schema:familyName Vargas
    124 schema:givenName Luis G.
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013723757207.56
    126 rdf:type schema:Person
    127 sg:person.0774605063.24 schema:affiliation grid-institutes:grid.415354.2
    128 schema:familyName Strum
    129 schema:givenName David P.
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774605063.24
    131 rdf:type schema:Person
    132 sg:pub.10.1023/a:1011802630656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048645446
    133 https://doi.org/10.1023/a:1011802630656
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1023/a:1019009928005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009036466
    136 https://doi.org/10.1023/a:1019009928005
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1023/a:1019059022128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051374333
    139 https://doi.org/10.1023/a:1019059022128
    140 rdf:type schema:CreativeWork
    141 grid-institutes:grid.21925.3d schema:alternateName Joseph M. Katz Graduate School of Business, University of Pittsburgh, Pittsburgh, PA, USA
    142 schema:name Joseph M. Katz Graduate School of Business, University of Pittsburgh, Pittsburgh, PA, USA
    143 rdf:type schema:Organization
    144 grid-institutes:grid.255272.5 schema:alternateName A.J. Palumbo School of Business Administration, Duquesne University, Pittsburgh, PA, USA
    145 schema:name A.J. Palumbo School of Business Administration, Duquesne University, Pittsburgh, PA, USA
    146 rdf:type schema:Organization
    147 grid-institutes:grid.415354.2 schema:alternateName Department of Anesthesiology, Queen's University, Kingston General Hospital, Kingston, Ontario, Canada
    148 schema:name Department of Anesthesiology, Queen's University, Kingston General Hospital, Kingston, Ontario, Canada
    149 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...