Wave Statistics in Non-Linear Random Sea View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-06

AUTHORS

Ulla Machado, Igor Rychlik

ABSTRACT

The sea elevation at a fixed point is modeled as a sum of a Gaussian process plus a quadratic random correction term. It is shown that the process can also be written as a quadratic form of a vector valued Gaussian process with arbitrary mean. The saddlepoint method is used to approximate the intensity μ (u), say, the sea level crosses the level u. The accuracy of the proposed method is studied. In examples the computed intensity is used to bound the wave crest distribution. The bounds are compared with empirical distributions derived from simulations. More... »

PAGES

125-146

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/b:extr.0000025663.45811.9b

DOI

http://dx.doi.org/10.1023/b:extr.0000025663.45811.9b

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010681350


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre for Mathematical Sciences, Mathematical Statistics, Lund University, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Centre for Mathematical Sciences, Mathematical Statistics, Lund University, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Machado", 
        "givenName": "Ulla", 
        "id": "sg:person.013063707631.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013063707631.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Mathematical Sciences, Mathematical Statistics, Lund University, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Centre for Mathematical Sciences, Mathematical Statistics, Lund University, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rychlik", 
        "givenName": "Igor", 
        "id": "sg:person.015546022606.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546022606.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1017942408501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053464635", 
          "https://doi.org/10.1023/a:1017942408501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015277305308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011388456", 
          "https://doi.org/10.1023/a:1015277305308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00339934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010782280", 
          "https://doi.org/10.1007/bf00339934"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-06", 
    "datePublishedReg": "2003-06-01", 
    "description": "The sea elevation at a fixed point is modeled as a sum of a Gaussian process plus a quadratic random correction term. It is shown that the process can also be written as a quadratic form of a vector valued Gaussian process with arbitrary mean. The saddlepoint method is used to approximate the intensity \u03bc (u), say, the sea level crosses the level u. The accuracy of the proposed method is studied. In examples the computed intensity is used to bound the wave crest distribution. The bounds are compared with empirical distributions derived from simulations.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/b:extr.0000025663.45811.9b", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047855", 
        "issn": [
          "1386-1999", 
          "1572-915X"
        ], 
        "name": "Extremes", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "Gaussian process", 
      "wave crest distribution", 
      "random seas", 
      "saddlepoint method", 
      "level u.", 
      "wave statistics", 
      "crest distribution", 
      "intensity \u03bc", 
      "quadratic form", 
      "arbitrary means", 
      "empirical distribution", 
      "correction term", 
      "computed intensity", 
      "sea elevation", 
      "bounds", 
      "statistics", 
      "distribution", 
      "simulations", 
      "sum", 
      "U.", 
      "process", 
      "accuracy", 
      "vector", 
      "sea level", 
      "terms", 
      "method", 
      "point", 
      "means", 
      "form", 
      "example", 
      "Sea", 
      "intensity", 
      "levels", 
      "elevation"
    ], 
    "name": "Wave Statistics in Non-Linear Random Sea", 
    "pagination": "125-146", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010681350"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/b:extr.0000025663.45811.9b"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/b:extr.0000025663.45811.9b", 
      "https://app.dimensions.ai/details/publication/pub.1010681350"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_371.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/b:extr.0000025663.45811.9b"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:extr.0000025663.45811.9b'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:extr.0000025663.45811.9b'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:extr.0000025663.45811.9b'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:extr.0000025663.45811.9b'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      22 PREDICATES      63 URIs      52 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/b:extr.0000025663.45811.9b schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N3a0e3eae5b264e5c9f5384f52db08ede
4 schema:citation sg:pub.10.1007/bf00339934
5 sg:pub.10.1023/a:1015277305308
6 sg:pub.10.1023/a:1017942408501
7 schema:datePublished 2003-06
8 schema:datePublishedReg 2003-06-01
9 schema:description The sea elevation at a fixed point is modeled as a sum of a Gaussian process plus a quadratic random correction term. It is shown that the process can also be written as a quadratic form of a vector valued Gaussian process with arbitrary mean. The saddlepoint method is used to approximate the intensity μ (u), say, the sea level crosses the level u. The accuracy of the proposed method is studied. In examples the computed intensity is used to bound the wave crest distribution. The bounds are compared with empirical distributions derived from simulations.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N94c24edfeac046289c5863e0191d90ca
14 N9f3645c6da72417885c62ade1a34edd4
15 sg:journal.1047855
16 schema:keywords Gaussian process
17 Sea
18 U.
19 accuracy
20 arbitrary means
21 bounds
22 computed intensity
23 correction term
24 crest distribution
25 distribution
26 elevation
27 empirical distribution
28 example
29 form
30 intensity
31 intensity μ
32 level u.
33 levels
34 means
35 method
36 point
37 process
38 quadratic form
39 random seas
40 saddlepoint method
41 sea elevation
42 sea level
43 simulations
44 statistics
45 sum
46 terms
47 vector
48 wave crest distribution
49 wave statistics
50 schema:name Wave Statistics in Non-Linear Random Sea
51 schema:pagination 125-146
52 schema:productId N4644cd3cd0e3406d8e7522f4a0b1bcf2
53 Nf308d1244cea422a84476ad4f847db25
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010681350
55 https://doi.org/10.1023/b:extr.0000025663.45811.9b
56 schema:sdDatePublished 2022-06-01T22:04
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Ne34f93717abe434ca8672f7b6ea56f1b
59 schema:url https://doi.org/10.1023/b:extr.0000025663.45811.9b
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N11a6db40b1644dbbabeb7e927f0e3370 rdf:first sg:person.015546022606.95
64 rdf:rest rdf:nil
65 N3a0e3eae5b264e5c9f5384f52db08ede rdf:first sg:person.013063707631.43
66 rdf:rest N11a6db40b1644dbbabeb7e927f0e3370
67 N4644cd3cd0e3406d8e7522f4a0b1bcf2 schema:name dimensions_id
68 schema:value pub.1010681350
69 rdf:type schema:PropertyValue
70 N94c24edfeac046289c5863e0191d90ca schema:issueNumber 2
71 rdf:type schema:PublicationIssue
72 N9f3645c6da72417885c62ade1a34edd4 schema:volumeNumber 6
73 rdf:type schema:PublicationVolume
74 Ne34f93717abe434ca8672f7b6ea56f1b schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Nf308d1244cea422a84476ad4f847db25 schema:name doi
77 schema:value 10.1023/b:extr.0000025663.45811.9b
78 rdf:type schema:PropertyValue
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
83 schema:name Statistics
84 rdf:type schema:DefinedTerm
85 sg:journal.1047855 schema:issn 1386-1999
86 1572-915X
87 schema:name Extremes
88 schema:publisher Springer Nature
89 rdf:type schema:Periodical
90 sg:person.013063707631.43 schema:affiliation grid-institutes:grid.4514.4
91 schema:familyName Machado
92 schema:givenName Ulla
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013063707631.43
94 rdf:type schema:Person
95 sg:person.015546022606.95 schema:affiliation grid-institutes:grid.4514.4
96 schema:familyName Rychlik
97 schema:givenName Igor
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546022606.95
99 rdf:type schema:Person
100 sg:pub.10.1007/bf00339934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010782280
101 https://doi.org/10.1007/bf00339934
102 rdf:type schema:CreativeWork
103 sg:pub.10.1023/a:1015277305308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011388456
104 https://doi.org/10.1023/a:1015277305308
105 rdf:type schema:CreativeWork
106 sg:pub.10.1023/a:1017942408501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053464635
107 https://doi.org/10.1023/a:1017942408501
108 rdf:type schema:CreativeWork
109 grid-institutes:grid.4514.4 schema:alternateName Centre for Mathematical Sciences, Mathematical Statistics, Lund University, Sweden
110 schema:name Centre for Mathematical Sciences, Mathematical Statistics, Lund University, Sweden
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...