Temperature-Electrical Conductivity Relation of Water for Environmental Monitoring and Geophysical Data Inversion View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-08

AUTHORS

Masaki Hayashi

ABSTRACT

Electrical conductivity (EC) is widely used for monitoring the mixing of fresh water and saline water, separating stream hydrographs, and geophysical mapping of contaminated groundwater. The measured EC values at various temperatures need to be reported as corresponding to a standard temperature because EC is dependent on temperature. An arbitrary constant is commonly used for temperature compensation assuming that EC-temperature relation is linear (for example 2% increase of EC per 1 degrees C). This paper examines the EC-temperature relation of natural waters having vastly different compositions and salinities. EC-temperature relation was slightly nonlinear in a temperature range 0-30 degrees C, but the linear equation approximated the relation reasonably well. The temperature compensation factor corresponding to 25 degrees C ranged between 0.0175 and 0.0198. When the mean value 0.0187 was used, the error of estimating EC at 25 degrees C from EC at 10 degrees C was less than about 2% for all samples tested. Temperature compensation factors vary substantially depending on the choice of standard temperature. Therefore, a care must be taken when standard temperatures different from 25 degrees C are used. More... »

PAGES

119-128

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/b:emas.0000031719.83065.68

DOI

http://dx.doi.org/10.1023/b:emas.0000031719.83065.68

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002323842

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15327152


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electric Conductivity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Monitoring", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Calgary", 
          "id": "https://www.grid.ac/institutes/grid.22072.35", 
          "name": [
            "Department of Geology and Geophysics, University of Calgary, Calgary, Alberta, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayashi", 
        "givenName": "Masaki", 
        "id": "sg:person.01010002376.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010002376.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s100400100146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004994296", 
          "https://doi.org/10.1007/s100400100146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(95)02895-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006078109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(89)90109-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010805810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(89)90109-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010805810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7037(77)90186-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014702593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7037(77)90186-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014702593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02442136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021753040", 
          "https://doi.org/10.1007/bf02442136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02442136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021753040", 
          "https://doi.org/10.1007/bf02442136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(86)90049-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035748791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4141/cjss83-008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037797568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0926-9851(02)00146-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042163116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00140a003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054975301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100721a006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055677266"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-08", 
    "datePublishedReg": "2004-08-01", 
    "description": "Electrical conductivity (EC) is widely used for monitoring the mixing of fresh water and saline water, separating stream hydrographs, and geophysical mapping of contaminated groundwater. The measured EC values at various temperatures need to be reported as corresponding to a standard temperature because EC is dependent on temperature. An arbitrary constant is commonly used for temperature compensation assuming that EC-temperature relation is linear (for example 2% increase of EC per 1 degrees C). This paper examines the EC-temperature relation of natural waters having vastly different compositions and salinities. EC-temperature relation was slightly nonlinear in a temperature range 0-30 degrees C, but the linear equation approximated the relation reasonably well. The temperature compensation factor corresponding to 25 degrees C ranged between 0.0175 and 0.0198. When the mean value 0.0187 was used, the error of estimating EC at 25 degrees C from EC at 10 degrees C was less than about 2% for all samples tested. Temperature compensation factors vary substantially depending on the choice of standard temperature. Therefore, a care must be taken when standard temperatures different from 25 degrees C are used.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/b:emas.0000031719.83065.68", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095684", 
        "issn": [
          "0167-6369", 
          "1573-2959"
        ], 
        "name": "Environmental Monitoring and Assessment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "96"
      }
    ], 
    "name": "Temperature-Electrical Conductivity Relation of Water for Environmental Monitoring and Geophysical Data Inversion", 
    "pagination": "119-128", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0b1084b875ff9ee6efc34ed8b0ed99666cf6d4d9c8515b9ada0b412c77092e68"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15327152"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8508350"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/b:emas.0000031719.83065.68"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002323842"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/b:emas.0000031719.83065.68", 
      "https://app.dimensions.ai/details/publication/pub.1002323842"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FB%3AEMAS.0000031719.83065.68"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:emas.0000031719.83065.68'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:emas.0000031719.83065.68'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:emas.0000031719.83065.68'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:emas.0000031719.83065.68'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      44 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/b:emas.0000031719.83065.68 schema:about N3575ed866e934945bfa8ad8311369e19
2 N8b2cd554c0724268aa480310a6dc825c
3 N93e78a3c2be642f8b0abed69e93c753a
4 Nb1672552c92a405db6ce2289b532f14a
5 Ndd559ada6e4c4b0699273aac2d71a7c2
6 anzsrc-for:04
7 anzsrc-for:0406
8 schema:author N432d6d561bfd4deda7d3894607974db6
9 schema:citation sg:pub.10.1007/bf02442136
10 sg:pub.10.1007/s100400100146
11 https://doi.org/10.1016/0016-7037(77)90186-7
12 https://doi.org/10.1016/0022-1694(86)90049-1
13 https://doi.org/10.1016/0022-1694(89)90109-1
14 https://doi.org/10.1016/0022-1694(95)02895-1
15 https://doi.org/10.1016/s0926-9851(02)00146-5
16 https://doi.org/10.1021/ac00140a003
17 https://doi.org/10.1021/j100721a006
18 https://doi.org/10.4141/cjss83-008
19 schema:datePublished 2004-08
20 schema:datePublishedReg 2004-08-01
21 schema:description Electrical conductivity (EC) is widely used for monitoring the mixing of fresh water and saline water, separating stream hydrographs, and geophysical mapping of contaminated groundwater. The measured EC values at various temperatures need to be reported as corresponding to a standard temperature because EC is dependent on temperature. An arbitrary constant is commonly used for temperature compensation assuming that EC-temperature relation is linear (for example 2% increase of EC per 1 degrees C). This paper examines the EC-temperature relation of natural waters having vastly different compositions and salinities. EC-temperature relation was slightly nonlinear in a temperature range 0-30 degrees C, but the linear equation approximated the relation reasonably well. The temperature compensation factor corresponding to 25 degrees C ranged between 0.0175 and 0.0198. When the mean value 0.0187 was used, the error of estimating EC at 25 degrees C from EC at 10 degrees C was less than about 2% for all samples tested. Temperature compensation factors vary substantially depending on the choice of standard temperature. Therefore, a care must be taken when standard temperatures different from 25 degrees C are used.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf Nb9fab46f3cdb484aa0df04ecdc056225
26 Nfbc73880c79343e8b45409d197cbc384
27 sg:journal.1095684
28 schema:name Temperature-Electrical Conductivity Relation of Water for Environmental Monitoring and Geophysical Data Inversion
29 schema:pagination 119-128
30 schema:productId N1f1310df87ae4502bda45009e0960b45
31 N256ece9f80a3403e8b28103d88580561
32 N2623452bad2b403eb08a2dda3cc27e32
33 N6733905baf66423ba281e6d70d5f84ee
34 Ne24b2e71ef1c44de9b4b4c71c37573a8
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002323842
36 https://doi.org/10.1023/b:emas.0000031719.83065.68
37 schema:sdDatePublished 2019-04-10T23:22
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N4587b821e55f4c1fb89e540eed28cb1d
40 schema:url http://link.springer.com/10.1023%2FB%3AEMAS.0000031719.83065.68
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N1f1310df87ae4502bda45009e0960b45 schema:name dimensions_id
45 schema:value pub.1002323842
46 rdf:type schema:PropertyValue
47 N256ece9f80a3403e8b28103d88580561 schema:name doi
48 schema:value 10.1023/b:emas.0000031719.83065.68
49 rdf:type schema:PropertyValue
50 N2623452bad2b403eb08a2dda3cc27e32 schema:name readcube_id
51 schema:value 0b1084b875ff9ee6efc34ed8b0ed99666cf6d4d9c8515b9ada0b412c77092e68
52 rdf:type schema:PropertyValue
53 N3575ed866e934945bfa8ad8311369e19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
54 schema:name Calibration
55 rdf:type schema:DefinedTerm
56 N432d6d561bfd4deda7d3894607974db6 rdf:first sg:person.01010002376.12
57 rdf:rest rdf:nil
58 N4587b821e55f4c1fb89e540eed28cb1d schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N6733905baf66423ba281e6d70d5f84ee schema:name pubmed_id
61 schema:value 15327152
62 rdf:type schema:PropertyValue
63 N8b2cd554c0724268aa480310a6dc825c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Water
65 rdf:type schema:DefinedTerm
66 N93e78a3c2be642f8b0abed69e93c753a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Electric Conductivity
68 rdf:type schema:DefinedTerm
69 Nb1672552c92a405db6ce2289b532f14a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Environmental Monitoring
71 rdf:type schema:DefinedTerm
72 Nb9fab46f3cdb484aa0df04ecdc056225 schema:volumeNumber 96
73 rdf:type schema:PublicationVolume
74 Ndd559ada6e4c4b0699273aac2d71a7c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Temperature
76 rdf:type schema:DefinedTerm
77 Ne24b2e71ef1c44de9b4b4c71c37573a8 schema:name nlm_unique_id
78 schema:value 8508350
79 rdf:type schema:PropertyValue
80 Nfbc73880c79343e8b45409d197cbc384 schema:issueNumber 1-3
81 rdf:type schema:PublicationIssue
82 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
83 schema:name Earth Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
86 schema:name Physical Geography and Environmental Geoscience
87 rdf:type schema:DefinedTerm
88 sg:journal.1095684 schema:issn 0167-6369
89 1573-2959
90 schema:name Environmental Monitoring and Assessment
91 rdf:type schema:Periodical
92 sg:person.01010002376.12 schema:affiliation https://www.grid.ac/institutes/grid.22072.35
93 schema:familyName Hayashi
94 schema:givenName Masaki
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010002376.12
96 rdf:type schema:Person
97 sg:pub.10.1007/bf02442136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021753040
98 https://doi.org/10.1007/bf02442136
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s100400100146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004994296
101 https://doi.org/10.1007/s100400100146
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0016-7037(77)90186-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014702593
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0022-1694(86)90049-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035748791
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0022-1694(89)90109-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010805810
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0022-1694(95)02895-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006078109
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0926-9851(02)00146-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042163116
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1021/ac00140a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054975301
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1021/j100721a006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055677266
116 rdf:type schema:CreativeWork
117 https://doi.org/10.4141/cjss83-008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037797568
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.22072.35 schema:alternateName University of Calgary
120 schema:name Department of Geology and Geophysics, University of Calgary, Calgary, Alberta, Canada
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...