Plane Symmetric Cosmological Macro Models in Self-creation Theory of Gravitation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-05

AUTHORS

U.K. Panigrahi, R.C. Sahu

ABSTRACT

We have constructed a class of plane symmetric macro models in Barber's second self-creation theory, when the source of the gravitational field is a macro matter field representing perfect fluid and satisfying the gamma-law equation of state p=(γ-1)ρ, where γ=4/3 and 3/2. The solutions of the field equations are derived and their physical aspects are studied. More... »

PAGES

543-551

References to SciGraph publications

  • 1990-06. Bianchi type-I models in self-creation theory of gravitation in ASTROPHYSICS AND SPACE SCIENCE
  • 2003-05. Micro and Macro Cosmological Model in Barber's Second Self-Creation Theory in ASTROPHYSICS AND SPACE SCIENCE
  • 1987-12. Self-creation cosmological solutions in ASTROPHYSICS AND SPACE SCIENCE
  • 1991-05. Bianchi type-II and III models in self-creation cosmology in ASTROPHYSICS AND SPACE SCIENCE
  • 1997-03. Early Universe in Self-Creation Cosmology in ASTROPHYSICS AND SPACE SCIENCE
  • 2003-12. Bianchi Type-1 vacuum models in modified theory of general relativity in ASTROPHYSICS AND SPACE SCIENCE
  • 1989-05. Bianchi type-VI0 models in self-creation cosmology in ASTROPHYSICS AND SPACE SCIENCE
  • 1987-09. Consistency of field equations in “Self-Creation” cosmologies in GENERAL RELATIVITY AND GRAVITATION
  • 1982-02. On two “self-creation” cosmologies in GENERAL RELATIVITY AND GRAVITATION
  • 1996-09. Unified description of the early universe in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/b:cjop.0000024957.99564.97

    DOI

    http://dx.doi.org/10.1023/b:cjop.0000024957.99564.97

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033609342


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Mathematics and Science, U.C.P. Engineering School, 760 010, Berhampur, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Panigrahi", 
            "givenName": "U.K.", 
            "id": "sg:person.011426145222.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011426145222.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Mathematics, K.S.U.B. College, 761 126, Bhanjanagar, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sahu", 
            "givenName": "R.C.", 
            "id": "sg:person.014342130473.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014342130473.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00759299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007752266", 
              "https://doi.org/10.1007/bf00759299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00759299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007752266", 
              "https://doi.org/10.1007/bf00759299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1023306103130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014932480", 
              "https://doi.org/10.1023/a:1023306103130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00756918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019191447", 
              "https://doi.org/10.1007/bf00756918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00756918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019191447", 
              "https://doi.org/10.1007/bf00756918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00756918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019191447", 
              "https://doi.org/10.1007/bf00756918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1001140931771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019671552", 
              "https://doi.org/10.1023/a:1001140931771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02302426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027394624", 
              "https://doi.org/10.1007/bf02302426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02302426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027394624", 
              "https://doi.org/10.1007/bf02302426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00643809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038006815", 
              "https://doi.org/10.1007/bf00643809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00643809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038006815", 
              "https://doi.org/10.1007/bf00643809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00643809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038006815", 
              "https://doi.org/10.1007/bf00643809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:astr.0000005123.68634.b8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043136661", 
              "https://doi.org/10.1023/b:astr.0000005123.68634.b8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00636864", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045804122", 
              "https://doi.org/10.1007/bf00636864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00636864", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045804122", 
              "https://doi.org/10.1007/bf00636864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00645214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045872901", 
              "https://doi.org/10.1007/bf00645214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00645214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045872901", 
              "https://doi.org/10.1007/bf00645214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00642359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052513745", 
              "https://doi.org/10.1007/bf00642359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00642359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052513745", 
              "https://doi.org/10.1007/bf00642359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.124.925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060424827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.124.925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060424827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.98.1123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060463598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.98.1123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060463598"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-05", 
        "datePublishedReg": "2004-05-01", 
        "description": "We have constructed a class of plane symmetric macro models in Barber's second self-creation theory, when the source of the gravitational field is a macro matter field representing perfect fluid and satisfying the gamma-law equation of state p=(\u03b3-1)\u03c1, where \u03b3=4/3 and 3/2. The solutions of the field equations are derived and their physical aspects are studied.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/b:cjop.0000024957.99564.97", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297212", 
            "issn": [
              "0011-4626", 
              "1572-9486"
            ], 
            "name": "Czechoslovak Journal of Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "54"
          }
        ], 
        "name": "Plane Symmetric Cosmological Macro Models in Self-creation Theory of Gravitation", 
        "pagination": "543-551", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a01a871d650d0c91aaa0081c0289026f14a81a0cd6891c12719ea2ec7584b5bc"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/b:cjop.0000024957.99564.97"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033609342"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/b:cjop.0000024957.99564.97", 
          "https://app.dimensions.ai/details/publication/pub.1033609342"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000506.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023%2FB%3ACJOP.0000024957.99564.97"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:cjop.0000024957.99564.97'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:cjop.0000024957.99564.97'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:cjop.0000024957.99564.97'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:cjop.0000024957.99564.97'


     

    This table displays all metadata directly associated to this object as RDF triples.

    115 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/b:cjop.0000024957.99564.97 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N02fcd549ef5e4ff49e449b299890f779
    4 schema:citation sg:pub.10.1007/bf00636864
    5 sg:pub.10.1007/bf00642359
    6 sg:pub.10.1007/bf00643809
    7 sg:pub.10.1007/bf00645214
    8 sg:pub.10.1007/bf00756918
    9 sg:pub.10.1007/bf00759299
    10 sg:pub.10.1007/bf02302426
    11 sg:pub.10.1023/a:1001140931771
    12 sg:pub.10.1023/a:1023306103130
    13 sg:pub.10.1023/b:astr.0000005123.68634.b8
    14 https://doi.org/10.1103/physrev.124.925
    15 https://doi.org/10.1103/physrev.98.1123
    16 schema:datePublished 2004-05
    17 schema:datePublishedReg 2004-05-01
    18 schema:description We have constructed a class of plane symmetric macro models in Barber's second self-creation theory, when the source of the gravitational field is a macro matter field representing perfect fluid and satisfying the gamma-law equation of state p=(γ-1)ρ, where γ=4/3 and 3/2. The solutions of the field equations are derived and their physical aspects are studied.
    19 schema:genre research_article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree false
    22 schema:isPartOf N24a28660a39f45deac5cf202efce1a2e
    23 Nfed759bf756a456d9ebbe148d40355dd
    24 sg:journal.1297212
    25 schema:name Plane Symmetric Cosmological Macro Models in Self-creation Theory of Gravitation
    26 schema:pagination 543-551
    27 schema:productId N365a7091b330442ca4baa27ee3495b84
    28 N3853e752cd3b40c4b516fb902dd01a2e
    29 N8ffb240aac2045e497381a90ee99d2d1
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033609342
    31 https://doi.org/10.1023/b:cjop.0000024957.99564.97
    32 schema:sdDatePublished 2019-04-10T19:56
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher N5a9ed58a0e58485a970eb12314d05ab7
    35 schema:url http://link.springer.com/10.1023%2FB%3ACJOP.0000024957.99564.97
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N02fcd549ef5e4ff49e449b299890f779 rdf:first sg:person.011426145222.29
    40 rdf:rest Nc71c3e9680e64f5e99f28dd28bf0f46d
    41 N24a28660a39f45deac5cf202efce1a2e schema:issueNumber 5
    42 rdf:type schema:PublicationIssue
    43 N365a7091b330442ca4baa27ee3495b84 schema:name doi
    44 schema:value 10.1023/b:cjop.0000024957.99564.97
    45 rdf:type schema:PropertyValue
    46 N3853e752cd3b40c4b516fb902dd01a2e schema:name dimensions_id
    47 schema:value pub.1033609342
    48 rdf:type schema:PropertyValue
    49 N5a9ed58a0e58485a970eb12314d05ab7 schema:name Springer Nature - SN SciGraph project
    50 rdf:type schema:Organization
    51 N8b414451df0d454da6deb2592e3143d3 schema:name Department of Mathematics, K.S.U.B. College, 761 126, Bhanjanagar, India
    52 rdf:type schema:Organization
    53 N8ffb240aac2045e497381a90ee99d2d1 schema:name readcube_id
    54 schema:value a01a871d650d0c91aaa0081c0289026f14a81a0cd6891c12719ea2ec7584b5bc
    55 rdf:type schema:PropertyValue
    56 Naa347bff4258453bb32b71ca69b1069c schema:name Department of Mathematics and Science, U.C.P. Engineering School, 760 010, Berhampur, India
    57 rdf:type schema:Organization
    58 Nc71c3e9680e64f5e99f28dd28bf0f46d rdf:first sg:person.014342130473.16
    59 rdf:rest rdf:nil
    60 Nfed759bf756a456d9ebbe148d40355dd schema:volumeNumber 54
    61 rdf:type schema:PublicationVolume
    62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Mathematical Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Pure Mathematics
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1297212 schema:issn 0011-4626
    69 1572-9486
    70 schema:name Czechoslovak Journal of Physics
    71 rdf:type schema:Periodical
    72 sg:person.011426145222.29 schema:affiliation Naa347bff4258453bb32b71ca69b1069c
    73 schema:familyName Panigrahi
    74 schema:givenName U.K.
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011426145222.29
    76 rdf:type schema:Person
    77 sg:person.014342130473.16 schema:affiliation N8b414451df0d454da6deb2592e3143d3
    78 schema:familyName Sahu
    79 schema:givenName R.C.
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014342130473.16
    81 rdf:type schema:Person
    82 sg:pub.10.1007/bf00636864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045804122
    83 https://doi.org/10.1007/bf00636864
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/bf00642359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052513745
    86 https://doi.org/10.1007/bf00642359
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/bf00643809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038006815
    89 https://doi.org/10.1007/bf00643809
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/bf00645214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045872901
    92 https://doi.org/10.1007/bf00645214
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/bf00756918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019191447
    95 https://doi.org/10.1007/bf00756918
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/bf00759299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007752266
    98 https://doi.org/10.1007/bf00759299
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/bf02302426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027394624
    101 https://doi.org/10.1007/bf02302426
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1023/a:1001140931771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019671552
    104 https://doi.org/10.1023/a:1001140931771
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1023/a:1023306103130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014932480
    107 https://doi.org/10.1023/a:1023306103130
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1023/b:astr.0000005123.68634.b8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043136661
    110 https://doi.org/10.1023/b:astr.0000005123.68634.b8
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1103/physrev.124.925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060424827
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1103/physrev.98.1123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060463598
    115 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...