Thrust Performance of an Ideal Pulse Detonation Engine View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-07

AUTHORS

V. V. Mitrofanov, S. A. Zhdan

ABSTRACT

Quasi‐steady and two‐dimensional unsteady formulations of the problem on the operation cycle of a pulse detonation engine are derived. A formula for the specific impulse is obtained, and the thrust performance of the engine is calculated. It is found that the thrust performance of this engine for flight Mach numbers M ∈ [0; 3.6] and compression ratios p2/p1 ∈ [1; 80] are always higher than those of the ramjet and one‐spool turbojet. As the compression ratio increases, the advantage of the pulse detonation engine becomes less noticeable. More... »

PAGES

380-385

References to SciGraph publications

  • 1994-09. Reactive impulse from the explosion of a gas mixture in a semiinfinite space in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/b:cesw.0000033559.75292.8e

    DOI

    http://dx.doi.org/10.1023/b:cesw.0000033559.75292.8e

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014004248


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mechanical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, 630090, Novosibirsk", 
              "id": "http://www.grid.ac/institutes/grid.415877.8", 
              "name": [
                "Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, 630090, Novosibirsk"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mitrofanov", 
            "givenName": "V. V.", 
            "id": "sg:person.013323275672.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323275672.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, 630090, Novosibirsk", 
              "id": "http://www.grid.ac/institutes/grid.415877.8", 
              "name": [
                "Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, 630090, Novosibirsk"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhdan", 
            "givenName": "S. A.", 
            "id": "sg:person.011327640367.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011327640367.92"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00755833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034356079", 
              "https://doi.org/10.1007/bf00755833"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-07", 
        "datePublishedReg": "2004-07-01", 
        "description": "Quasi\u2010steady and two\u2010dimensional unsteady formulations of the problem on the operation cycle of a pulse detonation engine are derived. A formula for the specific impulse is obtained, and the thrust performance of the engine is calculated. It is found that the thrust performance of this engine for flight Mach numbers M \u2208 [0; 3.6] and compression ratios p2/p1 \u2208 [1; 80] are always higher than those of the ramjet and one\u2010spool turbojet. As the compression ratio increases, the advantage of the pulse detonation engine becomes less noticeable.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/b:cesw.0000033559.75292.8e", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049027", 
            "issn": [
              "0010-5082", 
              "1573-8345"
            ], 
            "name": "Combustion, Explosion, and Shock Waves", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "40"
          }
        ], 
        "keywords": [
          "P2/P1", 
          "impulses", 
          "pulse detonation engine", 
          "ratio", 
          "detonation engine", 
          "P1", 
          "cycle", 
          "thrust performance", 
          "Mach number M", 
          "unsteady formulation", 
          "operation cycle", 
          "specific impulse", 
          "advantages", 
          "formulation", 
          "problem", 
          "engine", 
          "number M", 
          "performance", 
          "compression ratio", 
          "ramjet", 
          "turbojet", 
          "formula", 
          "Quasi", 
          "two\u2010dimensional unsteady formulations", 
          "flight Mach numbers M", 
          "compression ratios p2/p1", 
          "ratios p2/p1", 
          "one\u2010spool turbojet", 
          "ideal pulse detonation engine"
        ], 
        "name": "Thrust Performance of an Ideal Pulse Detonation Engine", 
        "pagination": "380-385", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014004248"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/b:cesw.0000033559.75292.8e"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/b:cesw.0000033559.75292.8e", 
          "https://app.dimensions.ai/details/publication/pub.1014004248"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_384.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/b:cesw.0000033559.75292.8e"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:cesw.0000033559.75292.8e'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:cesw.0000033559.75292.8e'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:cesw.0000033559.75292.8e'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:cesw.0000033559.75292.8e'


     

    This table displays all metadata directly associated to this object as RDF triples.

    102 TRIPLES      22 PREDICATES      57 URIs      47 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/b:cesw.0000033559.75292.8e schema:about anzsrc-for:09
    2 anzsrc-for:0904
    3 anzsrc-for:0913
    4 schema:author N5fee86783d524259ab6529aee0e1f4c3
    5 schema:citation sg:pub.10.1007/bf00755833
    6 schema:datePublished 2004-07
    7 schema:datePublishedReg 2004-07-01
    8 schema:description Quasi‐steady and two‐dimensional unsteady formulations of the problem on the operation cycle of a pulse detonation engine are derived. A formula for the specific impulse is obtained, and the thrust performance of the engine is calculated. It is found that the thrust performance of this engine for flight Mach numbers M ∈ [0; 3.6] and compression ratios p2/p1 ∈ [1; 80] are always higher than those of the ramjet and one‐spool turbojet. As the compression ratio increases, the advantage of the pulse detonation engine becomes less noticeable.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N026b3533853b4078b3223e65e1c61fb9
    13 N1a649e69a18942728dc66bda2b69b544
    14 sg:journal.1049027
    15 schema:keywords Mach number M
    16 P1
    17 P2/P1
    18 Quasi
    19 advantages
    20 compression ratio
    21 compression ratios p2/p1
    22 cycle
    23 detonation engine
    24 engine
    25 flight Mach numbers M
    26 formula
    27 formulation
    28 ideal pulse detonation engine
    29 impulses
    30 number M
    31 one‐spool turbojet
    32 operation cycle
    33 performance
    34 problem
    35 pulse detonation engine
    36 ramjet
    37 ratio
    38 ratios p2/p1
    39 specific impulse
    40 thrust performance
    41 turbojet
    42 two‐dimensional unsteady formulations
    43 unsteady formulation
    44 schema:name Thrust Performance of an Ideal Pulse Detonation Engine
    45 schema:pagination 380-385
    46 schema:productId N1150ab4dccb54ec58d3dbd032fc006a4
    47 Nb3700d2778374f2ebbb559793af6ce20
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014004248
    49 https://doi.org/10.1023/b:cesw.0000033559.75292.8e
    50 schema:sdDatePublished 2022-01-01T18:13
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher Nc7dab1ec635b4213a008b3d9dcf6b4e1
    53 schema:url https://doi.org/10.1023/b:cesw.0000033559.75292.8e
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N026b3533853b4078b3223e65e1c61fb9 schema:volumeNumber 40
    58 rdf:type schema:PublicationVolume
    59 N1150ab4dccb54ec58d3dbd032fc006a4 schema:name dimensions_id
    60 schema:value pub.1014004248
    61 rdf:type schema:PropertyValue
    62 N1a649e69a18942728dc66bda2b69b544 schema:issueNumber 4
    63 rdf:type schema:PublicationIssue
    64 N5d1e1631e4164654b92c934e4b61afe1 rdf:first sg:person.011327640367.92
    65 rdf:rest rdf:nil
    66 N5fee86783d524259ab6529aee0e1f4c3 rdf:first sg:person.013323275672.07
    67 rdf:rest N5d1e1631e4164654b92c934e4b61afe1
    68 Nb3700d2778374f2ebbb559793af6ce20 schema:name doi
    69 schema:value 10.1023/b:cesw.0000033559.75292.8e
    70 rdf:type schema:PropertyValue
    71 Nc7dab1ec635b4213a008b3d9dcf6b4e1 schema:name Springer Nature - SN SciGraph project
    72 rdf:type schema:Organization
    73 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Engineering
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Chemical Engineering
    78 rdf:type schema:DefinedTerm
    79 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Mechanical Engineering
    81 rdf:type schema:DefinedTerm
    82 sg:journal.1049027 schema:issn 0010-5082
    83 1573-8345
    84 schema:name Combustion, Explosion, and Shock Waves
    85 schema:publisher Springer Nature
    86 rdf:type schema:Periodical
    87 sg:person.011327640367.92 schema:affiliation grid-institutes:grid.415877.8
    88 schema:familyName Zhdan
    89 schema:givenName S. A.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011327640367.92
    91 rdf:type schema:Person
    92 sg:person.013323275672.07 schema:affiliation grid-institutes:grid.415877.8
    93 schema:familyName Mitrofanov
    94 schema:givenName V. V.
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323275672.07
    96 rdf:type schema:Person
    97 sg:pub.10.1007/bf00755833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034356079
    98 https://doi.org/10.1007/bf00755833
    99 rdf:type schema:CreativeWork
    100 grid-institutes:grid.415877.8 schema:alternateName Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, 630090, Novosibirsk
    101 schema:name Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, 630090, Novosibirsk
    102 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...