Sound and Visual Tracking for Humanoid Robot View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-05

AUTHORS

Hiroshi G. Okuno, Kazuhiro Nakadai, Tino Lourens, Hiroaki Kitano

ABSTRACT

Mobile robots capable of auditory perception usually adopt the “stop-perceive-act” principle to avoid sounds made during moving due to motor noise. Although this principle reduces the complexity of the problems involved in auditory processing for mobile robots, it restricts their capabilities of auditory processing. In this paper, sound and visual tracking are investigated to compensate each other's drawbacks in tracking objects and to attain robust object tracking. Visual tracking may be difficult in case of occlusion, while sound tracking may be ambiguous in localization due to the nature of auditory processing. For this purpose, we present an active audition system for humanoid robot. The audition system of the highly intelligent humanoid requires localization of sound sources and identification of meanings of the sound in the auditory scene. The active audition reported in this paper focuses on improved sound source tracking by integrating audition, vision, and motor control. Given the multiple sound sources in the auditory scene, SIG the humanoid actively moves its head to improve localization by aligning microphones orthogonal to the sound source and by capturing the possible sound sources by vision. The system adaptively cancels motor noises using motor control signals. The experimental result demonstrates the effectiveness of sound and visual tracking. More... »

PAGES

253-266

References to SciGraph publications

  • 1988-01. Active vision in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 1997-12. Building ears for robots: Sound localization and separation in ARTIFICIAL LIFE AND ROBOTICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/b:apin.0000021417.62541.e0

    DOI

    http://dx.doi.org/10.1023/b:apin.0000021417.62541.e0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030937389


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Okuno", 
            "givenName": "Hiroshi G.", 
            "id": "sg:person.01367357171.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367357171.69"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Nakadai", 
            "givenName": "Kazuhiro", 
            "id": "sg:person.010000517747.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010000517747.71"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Lourens", 
            "givenName": "Tino", 
            "id": "sg:person.0674345766.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674345766.65"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Kitano", 
            "givenName": "Hiroaki", 
            "id": "sg:person.01355755204.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355755204.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0160-9327(93)90061-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018069122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02471133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035423731", 
              "https://doi.org/10.1007/bf02471133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00133571", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043967702", 
              "https://doi.org/10.1007/bf00133571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00133571", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043967702", 
              "https://doi.org/10.1007/bf00133571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-6393(98)00080-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051704609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icassp.1994.389714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094405748"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-05", 
        "datePublishedReg": "2004-05-01", 
        "description": "Mobile robots capable of auditory perception usually adopt the \u201cstop-perceive-act\u201d principle to avoid sounds made during moving due to motor noise. Although this principle reduces the complexity of the problems involved in auditory processing for mobile robots, it restricts their capabilities of auditory processing. In this paper, sound and visual tracking are investigated to compensate each other's drawbacks in tracking objects and to attain robust object tracking. Visual tracking may be difficult in case of occlusion, while sound tracking may be ambiguous in localization due to the nature of auditory processing. For this purpose, we present an active audition system for humanoid robot. The audition system of the highly intelligent humanoid requires localization of sound sources and identification of meanings of the sound in the auditory scene. The active audition reported in this paper focuses on improved sound source tracking by integrating audition, vision, and motor control. Given the multiple sound sources in the auditory scene, SIG the humanoid actively moves its head to improve localization by aligning microphones orthogonal to the sound source and by capturing the possible sound sources by vision. The system adaptively cancels motor noises using motor control signals. The experimental result demonstrates the effectiveness of sound and visual tracking.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/b:apin.0000021417.62541.e0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136076", 
            "issn": [
              "0924-669X", 
              "1573-7497"
            ], 
            "name": "Applied Intelligence", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "name": "Sound and Visual Tracking for Humanoid Robot", 
        "pagination": "253-266", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9361e78295d7fbf3ff824b60b37d9c5f88ab6d5472dd86c13217f27e83643401"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/b:apin.0000021417.62541.e0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030937389"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/b:apin.0000021417.62541.e0", 
          "https://app.dimensions.ai/details/publication/pub.1030937389"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000506.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023%2FB%3AAPIN.0000021417.62541.e0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:apin.0000021417.62541.e0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:apin.0000021417.62541.e0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:apin.0000021417.62541.e0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:apin.0000021417.62541.e0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    92 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/b:apin.0000021417.62541.e0 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N4cd6c2861fd04d049777fff566df8c58
    4 schema:citation sg:pub.10.1007/bf00133571
    5 sg:pub.10.1007/bf02471133
    6 https://doi.org/10.1016/0160-9327(93)90061-7
    7 https://doi.org/10.1016/s0167-6393(98)00080-6
    8 https://doi.org/10.1109/icassp.1994.389714
    9 schema:datePublished 2004-05
    10 schema:datePublishedReg 2004-05-01
    11 schema:description Mobile robots capable of auditory perception usually adopt the “stop-perceive-act” principle to avoid sounds made during moving due to motor noise. Although this principle reduces the complexity of the problems involved in auditory processing for mobile robots, it restricts their capabilities of auditory processing. In this paper, sound and visual tracking are investigated to compensate each other's drawbacks in tracking objects and to attain robust object tracking. Visual tracking may be difficult in case of occlusion, while sound tracking may be ambiguous in localization due to the nature of auditory processing. For this purpose, we present an active audition system for humanoid robot. The audition system of the highly intelligent humanoid requires localization of sound sources and identification of meanings of the sound in the auditory scene. The active audition reported in this paper focuses on improved sound source tracking by integrating audition, vision, and motor control. Given the multiple sound sources in the auditory scene, SIG the humanoid actively moves its head to improve localization by aligning microphones orthogonal to the sound source and by capturing the possible sound sources by vision. The system adaptively cancels motor noises using motor control signals. The experimental result demonstrates the effectiveness of sound and visual tracking.
    12 schema:genre research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N163e429de6fc4c8697b64cc0e09c0963
    16 Nb54d9c3f81f74f258bc7c67f31313eb3
    17 sg:journal.1136076
    18 schema:name Sound and Visual Tracking for Humanoid Robot
    19 schema:pagination 253-266
    20 schema:productId N23a7ad26a9a14527b54ad7e56643e7f3
    21 N47972a9a6fe548f8b116b7b8d7f97660
    22 Nd03ddd19ed4a4ffebfa66f7b28829082
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030937389
    24 https://doi.org/10.1023/b:apin.0000021417.62541.e0
    25 schema:sdDatePublished 2019-04-10T14:08
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N507659c55bd341f39de5214e559cfa8a
    28 schema:url http://link.springer.com/10.1023%2FB%3AAPIN.0000021417.62541.e0
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N141290670a45442baa5f9ab2516f7e52 rdf:first sg:person.01355755204.11
    33 rdf:rest rdf:nil
    34 N163e429de6fc4c8697b64cc0e09c0963 schema:issueNumber 3
    35 rdf:type schema:PublicationIssue
    36 N23a7ad26a9a14527b54ad7e56643e7f3 schema:name dimensions_id
    37 schema:value pub.1030937389
    38 rdf:type schema:PropertyValue
    39 N47972a9a6fe548f8b116b7b8d7f97660 schema:name readcube_id
    40 schema:value 9361e78295d7fbf3ff824b60b37d9c5f88ab6d5472dd86c13217f27e83643401
    41 rdf:type schema:PropertyValue
    42 N4cd6c2861fd04d049777fff566df8c58 rdf:first sg:person.01367357171.69
    43 rdf:rest Ncb19b9bb72ca4a3ba0a9a7cefb8c5003
    44 N507659c55bd341f39de5214e559cfa8a schema:name Springer Nature - SN SciGraph project
    45 rdf:type schema:Organization
    46 N5e2206597da24e2893337d9c4ed6fa61 rdf:first sg:person.0674345766.65
    47 rdf:rest N141290670a45442baa5f9ab2516f7e52
    48 Nb54d9c3f81f74f258bc7c67f31313eb3 schema:volumeNumber 20
    49 rdf:type schema:PublicationVolume
    50 Ncb19b9bb72ca4a3ba0a9a7cefb8c5003 rdf:first sg:person.010000517747.71
    51 rdf:rest N5e2206597da24e2893337d9c4ed6fa61
    52 Nd03ddd19ed4a4ffebfa66f7b28829082 schema:name doi
    53 schema:value 10.1023/b:apin.0000021417.62541.e0
    54 rdf:type schema:PropertyValue
    55 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Information and Computing Sciences
    57 rdf:type schema:DefinedTerm
    58 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Artificial Intelligence and Image Processing
    60 rdf:type schema:DefinedTerm
    61 sg:journal.1136076 schema:issn 0924-669X
    62 1573-7497
    63 schema:name Applied Intelligence
    64 rdf:type schema:Periodical
    65 sg:person.010000517747.71 schema:familyName Nakadai
    66 schema:givenName Kazuhiro
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010000517747.71
    68 rdf:type schema:Person
    69 sg:person.01355755204.11 schema:familyName Kitano
    70 schema:givenName Hiroaki
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355755204.11
    72 rdf:type schema:Person
    73 sg:person.01367357171.69 schema:familyName Okuno
    74 schema:givenName Hiroshi G.
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367357171.69
    76 rdf:type schema:Person
    77 sg:person.0674345766.65 schema:familyName Lourens
    78 schema:givenName Tino
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674345766.65
    80 rdf:type schema:Person
    81 sg:pub.10.1007/bf00133571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043967702
    82 https://doi.org/10.1007/bf00133571
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/bf02471133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035423731
    85 https://doi.org/10.1007/bf02471133
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/0160-9327(93)90061-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018069122
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1016/s0167-6393(98)00080-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051704609
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1109/icassp.1994.389714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094405748
    92 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...