Generalized contraction mapping principles in probabilistic metric spaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-10

AUTHORS

O. Hadžić, E. Pap, V. Radu

ABSTRACT

We give an improvement of Theorem 1 from [2] with a quite different approach, which enable us to prove that the fixed point is also globally attractive. In Theorem 2.11 a further generalization is obtained for a complete Menger space (S,F,T), where T belongs to a more general class of continuous t-norms than in the previous case where T=TM (=min). Theorem 3.2 is a generalization of Theorem 2 from [2]. Thereafter the notion of a generalized C-contraction of Krasnoselski's type is introduced and a fixed point theorem for such mappings is proved. An application in the space S(Ω, K, P) is given. More... »

PAGES

131-148

References to SciGraph publications

  • 1960-08. Leray-Schauder theory without local convexity in MATHEMATISCHE ANNALEN
  • 1972-03. Fixed points of contraction mappings on probabilistic metric spaces in THEORY OF COMPUTING SYSTEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/b:amhu.0000003897.39440.d8

    DOI

    http://dx.doi.org/10.1023/b:amhu.0000003897.39440.d8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026819302


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Informatics, University of Novi Sad, Trg D. Obradovi\u0107a 4, 21000, Novi Sad, Serbia and Montenegro", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Mathematics and Informatics, University of Novi Sad, Trg D. Obradovi\u0107a 4, 21000, Novi Sad, Serbia and Montenegro"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Had\u017ei\u0107", 
            "givenName": "O.", 
            "id": "sg:person.012221461063.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012221461063.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Informatics, University of Novi Sad, Trg D. Obradovi\u0107a 4, 21000, Novi Sad, Serbia and Montenegro", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Mathematics and Informatics, University of Novi Sad, Trg D. Obradovi\u0107a 4, 21000, Novi Sad, Serbia and Montenegro"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pap", 
            "givenName": "E.", 
            "id": "sg:person.012354470173.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354470173.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Mathematics, West University of Timisoara Bv. Vasile Parvan 4, 1900, Timisoara, Romania", 
              "id": "http://www.grid.ac/institutes/grid.14004.31", 
              "name": [
                "Faculty of Mathematics, West University of Timisoara Bv. Vasile Parvan 4, 1900, Timisoara, Romania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Radu", 
            "givenName": "V.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01360763", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033837151", 
              "https://doi.org/10.1007/bf01360763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01706080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023863015", 
              "https://doi.org/10.1007/bf01706080"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-10", 
        "datePublishedReg": "2003-10-01", 
        "description": "We give an improvement of Theorem 1 from [2] with a quite different approach, which enable us to prove that the fixed point is also globally attractive. In Theorem 2.11 a further generalization is obtained for a complete Menger space (S,F,T), where T belongs to a more general class of continuous t-norms than in the previous case where T=TM (=min). Theorem 3.2 is a generalization of Theorem 2 from [2]. Thereafter the notion of a generalized C-contraction of Krasnoselski's type is introduced and a fixed point theorem for such mappings is proved. An application in the space S(\u03a9, K, P) is given.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/b:amhu.0000003897.39440.d8", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136684", 
            "issn": [
              "0236-5294", 
              "1588-2632"
            ], 
            "name": "Acta Mathematica Hungarica", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "101"
          }
        ], 
        "keywords": [
          "generalized contraction mapping principle", 
          "contraction mapping principle", 
          "probabilistic metric spaces", 
          "point theorem", 
          "mapping principle", 
          "Theorem 3.2", 
          "general class", 
          "further generalization", 
          "Theorem 1", 
          "Theorem 2", 
          "metric spaces", 
          "such mappings", 
          "Menger spaces", 
          "generalization", 
          "space", 
          "theorem", 
          "different approaches", 
          "class", 
          "norms", 
          "approach", 
          "notion", 
          "principles", 
          "applications", 
          "point", 
          "previous cases", 
          "mapping", 
          "cases", 
          "types", 
          "contraction", 
          "improvement", 
          "Tm", 
          "complete Menger space", 
          "Krasnoselski's type"
        ], 
        "name": "Generalized contraction mapping principles in probabilistic metric spaces", 
        "pagination": "131-148", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026819302"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/b:amhu.0000003897.39440.d8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/b:amhu.0000003897.39440.d8", 
          "https://app.dimensions.ai/details/publication/pub.1026819302"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_371.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/b:amhu.0000003897.39440.d8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/b:amhu.0000003897.39440.d8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/b:amhu.0000003897.39440.d8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/b:amhu.0000003897.39440.d8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/b:amhu.0000003897.39440.d8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    115 TRIPLES      22 PREDICATES      61 URIs      51 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/b:amhu.0000003897.39440.d8 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ne8217f843ffa4978aa89e9c3a8d114c7
    4 schema:citation sg:pub.10.1007/bf01360763
    5 sg:pub.10.1007/bf01706080
    6 schema:datePublished 2003-10
    7 schema:datePublishedReg 2003-10-01
    8 schema:description We give an improvement of Theorem 1 from [2] with a quite different approach, which enable us to prove that the fixed point is also globally attractive. In Theorem 2.11 a further generalization is obtained for a complete Menger space (S,F,T), where T belongs to a more general class of continuous t-norms than in the previous case where T=TM (=min). Theorem 3.2 is a generalization of Theorem 2 from [2]. Thereafter the notion of a generalized C-contraction of Krasnoselski's type is introduced and a fixed point theorem for such mappings is proved. An application in the space S(Ω, K, P) is given.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N5e792388853f46ca9193a31ae1d410fa
    13 N79d5976ed9d0432380e014fff3409ed6
    14 sg:journal.1136684
    15 schema:keywords Krasnoselski's type
    16 Menger spaces
    17 Theorem 1
    18 Theorem 2
    19 Theorem 3.2
    20 Tm
    21 applications
    22 approach
    23 cases
    24 class
    25 complete Menger space
    26 contraction
    27 contraction mapping principle
    28 different approaches
    29 further generalization
    30 general class
    31 generalization
    32 generalized contraction mapping principle
    33 improvement
    34 mapping
    35 mapping principle
    36 metric spaces
    37 norms
    38 notion
    39 point
    40 point theorem
    41 previous cases
    42 principles
    43 probabilistic metric spaces
    44 space
    45 such mappings
    46 theorem
    47 types
    48 schema:name Generalized contraction mapping principles in probabilistic metric spaces
    49 schema:pagination 131-148
    50 schema:productId N0380e58f1982438bbbab04677c00c88e
    51 Nbae5963a14294c90a58a2774f1d32dc9
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026819302
    53 https://doi.org/10.1023/b:amhu.0000003897.39440.d8
    54 schema:sdDatePublished 2021-11-01T18:06
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher Nc5b97223ca754cbf8f48619b84ae4644
    57 schema:url https://doi.org/10.1023/b:amhu.0000003897.39440.d8
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N0380e58f1982438bbbab04677c00c88e schema:name doi
    62 schema:value 10.1023/b:amhu.0000003897.39440.d8
    63 rdf:type schema:PropertyValue
    64 N5e792388853f46ca9193a31ae1d410fa schema:issueNumber 1-2
    65 rdf:type schema:PublicationIssue
    66 N7377c0d3008e41dea1ea037187a3166c rdf:first sg:person.012354470173.10
    67 rdf:rest Nd0fe8fb617424906b04b01f98c4a88ea
    68 N79d5976ed9d0432380e014fff3409ed6 schema:volumeNumber 101
    69 rdf:type schema:PublicationVolume
    70 Nbae5963a14294c90a58a2774f1d32dc9 schema:name dimensions_id
    71 schema:value pub.1026819302
    72 rdf:type schema:PropertyValue
    73 Nc5b97223ca754cbf8f48619b84ae4644 schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 Nd0fe8fb617424906b04b01f98c4a88ea rdf:first Nf9fb4e984b044b458fffd754710761bc
    76 rdf:rest rdf:nil
    77 Ne8217f843ffa4978aa89e9c3a8d114c7 rdf:first sg:person.012221461063.90
    78 rdf:rest N7377c0d3008e41dea1ea037187a3166c
    79 Nf9fb4e984b044b458fffd754710761bc schema:affiliation grid-institutes:grid.14004.31
    80 schema:familyName Radu
    81 schema:givenName V.
    82 rdf:type schema:Person
    83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Mathematical Sciences
    85 rdf:type schema:DefinedTerm
    86 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Pure Mathematics
    88 rdf:type schema:DefinedTerm
    89 sg:journal.1136684 schema:issn 0236-5294
    90 1588-2632
    91 schema:name Acta Mathematica Hungarica
    92 schema:publisher Springer Nature
    93 rdf:type schema:Periodical
    94 sg:person.012221461063.90 schema:affiliation grid-institutes:None
    95 schema:familyName Hadžić
    96 schema:givenName O.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012221461063.90
    98 rdf:type schema:Person
    99 sg:person.012354470173.10 schema:affiliation grid-institutes:None
    100 schema:familyName Pap
    101 schema:givenName E.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354470173.10
    103 rdf:type schema:Person
    104 sg:pub.10.1007/bf01360763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033837151
    105 https://doi.org/10.1007/bf01360763
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/bf01706080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023863015
    108 https://doi.org/10.1007/bf01706080
    109 rdf:type schema:CreativeWork
    110 grid-institutes:None schema:alternateName Department of Mathematics and Informatics, University of Novi Sad, Trg D. Obradovića 4, 21000, Novi Sad, Serbia and Montenegro
    111 schema:name Department of Mathematics and Informatics, University of Novi Sad, Trg D. Obradovića 4, 21000, Novi Sad, Serbia and Montenegro
    112 rdf:type schema:Organization
    113 grid-institutes:grid.14004.31 schema:alternateName Faculty of Mathematics, West University of Timisoara Bv. Vasile Parvan 4, 1900, Timisoara, Romania
    114 schema:name Faculty of Mathematics, West University of Timisoara Bv. Vasile Parvan 4, 1900, Timisoara, Romania
    115 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...