Ontology type: schema:ScholarlyArticle Open Access: True
1999-04
AUTHORSJuan Maldacena
ABSTRACTWe show that the large-N limits of certainconformal field theories in various dimensions includein their Hilbert space a sector describing supergravityon the product of anti-de Sitter spacetimes, spheres, and other compact manifolds. This is shown bytaking some branes in the full M/string theory and thentaking a low-energy limit where the field theory on thebrane decouples from the bulk. We observe that, in this limit, we can still trust thenear-horizon geometry for large N. The enhancedsupersymmetries of the near-horizon geometry correspondto the extra supersymmetry generators present in thesuperconformal group (as opposed to just the super-Poincaregroup). The 't Hooft limit of 3 + 1 N = 4 super-Yang–Mills at the conformal pointis shown to contain strings: they are IIB strings. Weconjecture that compactifications of M/string theory on various anti-de Sitterspacetimes is dual to various conformal field theories.This leads to a new proposal for a definition ofM-theory which could be extended to include fivenoncompact dimensions. More... »
PAGES1113-1133
http://scigraph.springernature.com/pub.10.1023/a:1026654312961
DOIhttp://dx.doi.org/10.1023/a:1026654312961
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1042716891
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"familyName": "Maldacena",
"givenName": "Juan",
"type": "Person"
}
],
"datePublished": "1999-04",
"datePublishedReg": "1999-04-01",
"description": "We show that the large-N limits of certainconformal field theories in various dimensions includein their Hilbert space a sector describing supergravityon the product of anti-de Sitter spacetimes, spheres, and other compact manifolds. This is shown bytaking some branes in the full M/string theory and thentaking a low-energy limit where the field theory on thebrane decouples from the bulk. We observe that, in this limit, we can still trust thenear-horizon geometry for large N. The enhancedsupersymmetries of the near-horizon geometry correspondto the extra supersymmetry generators present in thesuperconformal group (as opposed to just the super-Poincaregroup). The 't Hooft limit of 3 + 1 N = 4 super-Yang\u2013Mills at the conformal pointis shown to contain strings: they are IIB strings. Weconjecture that compactifications of M/string theory on various anti-de Sitterspacetimes is dual to various conformal field theories.This leads to a new proposal for a definition ofM-theory which could be extended to include fivenoncompact dimensions.",
"genre": "article",
"id": "sg:pub.10.1023/a:1026654312961",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1053677",
"issn": [
"0020-7748",
"1572-9575"
],
"name": "International Journal of Theoretical Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "38"
}
],
"keywords": [
"field theory",
"string theory",
"conformal field theory",
"near-horizon geometry",
"superconformal field theories",
"low-energy limit",
"Hilbert space",
"Hooft limit",
"supersymmetry generators",
"IIB string",
"compact manifold",
"Yang-Mills",
"Sitter spacetime",
"theory",
"geometry",
"supergravity",
"spacetime",
"strings",
"compactification",
"manifold",
"branes",
"decouples",
"limit",
"dimensions",
"new proposal",
"space",
"Large",
"generator",
"sphere",
"bulk",
"definition",
"proposal",
"products",
"sector",
"group"
],
"name": "The Large-N Limit of Superconformal Field Theories and Supergravity",
"pagination": "1113-1133",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1042716891"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1023/a:1026654312961"
]
}
],
"sameAs": [
"https://doi.org/10.1023/a:1026654312961",
"https://app.dimensions.ai/details/publication/pub.1042716891"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:21",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_307.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1023/a:1026654312961"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1026654312961'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1026654312961'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1026654312961'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1026654312961'
This table displays all metadata directly associated to this object as RDF triples.
88 TRIPLES
21 PREDICATES
61 URIs
53 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1023/a:1026654312961 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | Nad4cefc7c3cc433bb8876a1c030328ac |
4 | ″ | schema:datePublished | 1999-04 |
5 | ″ | schema:datePublishedReg | 1999-04-01 |
6 | ″ | schema:description | We show that the large-N limits of certainconformal field theories in various dimensions includein their Hilbert space a sector describing supergravityon the product of anti-de Sitter spacetimes, spheres, and other compact manifolds. This is shown bytaking some branes in the full M/string theory and thentaking a low-energy limit where the field theory on thebrane decouples from the bulk. We observe that, in this limit, we can still trust thenear-horizon geometry for large N. The enhancedsupersymmetries of the near-horizon geometry correspondto the extra supersymmetry generators present in thesuperconformal group (as opposed to just the super-Poincaregroup). The 't Hooft limit of 3 + 1 N = 4 super-Yang–Mills at the conformal pointis shown to contain strings: they are IIB strings. Weconjecture that compactifications of M/string theory on various anti-de Sitterspacetimes is dual to various conformal field theories.This leads to a new proposal for a definition ofM-theory which could be extended to include fivenoncompact dimensions. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | true |
10 | ″ | schema:isPartOf | N91048a93e28242e7bb10e26ae4e19680 |
11 | ″ | ″ | Nd996a7c520e641feaa99b46fb742dac5 |
12 | ″ | ″ | sg:journal.1053677 |
13 | ″ | schema:keywords | Hilbert space |
14 | ″ | ″ | Hooft limit |
15 | ″ | ″ | IIB string |
16 | ″ | ″ | Large |
17 | ″ | ″ | Sitter spacetime |
18 | ″ | ″ | Yang-Mills |
19 | ″ | ″ | branes |
20 | ″ | ″ | bulk |
21 | ″ | ″ | compact manifold |
22 | ″ | ″ | compactification |
23 | ″ | ″ | conformal field theory |
24 | ″ | ″ | decouples |
25 | ″ | ″ | definition |
26 | ″ | ″ | dimensions |
27 | ″ | ″ | field theory |
28 | ″ | ″ | generator |
29 | ″ | ″ | geometry |
30 | ″ | ″ | group |
31 | ″ | ″ | limit |
32 | ″ | ″ | low-energy limit |
33 | ″ | ″ | manifold |
34 | ″ | ″ | near-horizon geometry |
35 | ″ | ″ | new proposal |
36 | ″ | ″ | products |
37 | ″ | ″ | proposal |
38 | ″ | ″ | sector |
39 | ″ | ″ | space |
40 | ″ | ″ | spacetime |
41 | ″ | ″ | sphere |
42 | ″ | ″ | string theory |
43 | ″ | ″ | strings |
44 | ″ | ″ | superconformal field theories |
45 | ″ | ″ | supergravity |
46 | ″ | ″ | supersymmetry generators |
47 | ″ | ″ | theory |
48 | ″ | schema:name | The Large-N Limit of Superconformal Field Theories and Supergravity |
49 | ″ | schema:pagination | 1113-1133 |
50 | ″ | schema:productId | N7ef40129186548598009125462be3622 |
51 | ″ | ″ | Nc6892d968ce4490489d3aff29176ca2c |
52 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042716891 |
53 | ″ | ″ | https://doi.org/10.1023/a:1026654312961 |
54 | ″ | schema:sdDatePublished | 2022-05-20T07:21 |
55 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
56 | ″ | schema:sdPublisher | Nc1b26fa2a82e4afea8239f74b5940ac9 |
57 | ″ | schema:url | https://doi.org/10.1023/a:1026654312961 |
58 | ″ | sgo:license | sg:explorer/license/ |
59 | ″ | sgo:sdDataset | articles |
60 | ″ | rdf:type | schema:ScholarlyArticle |
61 | N7ef40129186548598009125462be3622 | schema:name | dimensions_id |
62 | ″ | schema:value | pub.1042716891 |
63 | ″ | rdf:type | schema:PropertyValue |
64 | N91048a93e28242e7bb10e26ae4e19680 | schema:issueNumber | 4 |
65 | ″ | rdf:type | schema:PublicationIssue |
66 | Nad4cefc7c3cc433bb8876a1c030328ac | rdf:first | Nb6abda70417a487a98c847d00fced0d9 |
67 | ″ | rdf:rest | rdf:nil |
68 | Nb6abda70417a487a98c847d00fced0d9 | schema:familyName | Maldacena |
69 | ″ | schema:givenName | Juan |
70 | ″ | rdf:type | schema:Person |
71 | Nc1b26fa2a82e4afea8239f74b5940ac9 | schema:name | Springer Nature - SN SciGraph project |
72 | ″ | rdf:type | schema:Organization |
73 | Nc6892d968ce4490489d3aff29176ca2c | schema:name | doi |
74 | ″ | schema:value | 10.1023/a:1026654312961 |
75 | ″ | rdf:type | schema:PropertyValue |
76 | Nd996a7c520e641feaa99b46fb742dac5 | schema:volumeNumber | 38 |
77 | ″ | rdf:type | schema:PublicationVolume |
78 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
79 | ″ | schema:name | Mathematical Sciences |
80 | ″ | rdf:type | schema:DefinedTerm |
81 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
82 | ″ | schema:name | Pure Mathematics |
83 | ″ | rdf:type | schema:DefinedTerm |
84 | sg:journal.1053677 | schema:issn | 0020-7748 |
85 | ″ | ″ | 1572-9575 |
86 | ″ | schema:name | International Journal of Theoretical Physics |
87 | ″ | schema:publisher | Springer Nature |
88 | ″ | rdf:type | schema:Periodical |