Primordial Black Holes: Pair Creation, Lorentzian Condition, and Evaporation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-04

AUTHORS

Raphael Bousso, Stephen W. Hawking

ABSTRACT

The wave function of the universe is usuallytaken to be a functional of the threemetric on aspacelike section, Σ, which is measured. It issometimes better, however, to work in the conjugaterepresentation, where the wave function depends on a quantityrelated to the second fundamental form of Σ. Thismakes it possible to ensure that Σ is part of aLorentzian universe by requiring that the argument of the wave function be purely imaginary. Wedemonstrate the advantages of this formalism first inthe well-known examples of the nucleation of a de Sitteror a Nariai universe. We then use it to calculate the pair creation rate for submaximal blackholes in de Sitter space, which had been thought tovanish semiclassically. We also study the quantumevolution of asymptotically de Sitter black holes. Forblack holes whose size is comparable to that of thecosmological horizon, this process differs significantlyfrom the evaporation of asymptotically flat black holes.Our model includes the one-loop effective action in the s-wave and large-N approximation.Black holes of the maximal mass are in equilibrium.Unexpectedly, we find that nearly maximal quantumSchwarzschild–de Sitter black holes antievaporate.However, there is a different perturbative mode thatleads to evaporation. We show that this mode will alwaysbe excited when a pair of maximal cosmological blackholes nucleates. More... »

PAGES

1227-1252

References to SciGraph publications

  • 1975-08. Particle creation by black holes in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1026618832525

    DOI

    http://dx.doi.org/10.1023/a:1026618832525

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021233271


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Bousso", 
            "givenName": "Raphael", 
            "id": "sg:person.014230670533.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014230670533.11"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Hawking", 
            "givenName": "Stephen W.", 
            "id": "sg:person.012212614165.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02345020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010701796", 
              "https://doi.org/10.1007/bf02345020"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-04", 
        "datePublishedReg": "1999-04-01", 
        "description": "The wave function of the universe is usuallytaken to be a functional of the threemetric on aspacelike section, \u03a3, which is measured. It issometimes better, however, to work in the conjugaterepresentation, where the wave function depends on a quantityrelated to the second fundamental form of \u03a3. Thismakes it possible to ensure that \u03a3 is part of aLorentzian universe by requiring that the argument of the wave function be purely imaginary. Wedemonstrate the advantages of this formalism first inthe well-known examples of the nucleation of a de Sitteror a Nariai universe. We then use it to calculate the pair creation rate for submaximal blackholes in de Sitter space, which had been thought tovanish semiclassically. We also study the quantumevolution of asymptotically de Sitter black holes. Forblack holes whose size is comparable to that of thecosmological horizon, this process differs significantlyfrom the evaporation of asymptotically flat black holes.Our model includes the one-loop effective action in the s-wave and large-N approximation.Black holes of the maximal mass are in equilibrium.Unexpectedly, we find that nearly maximal quantumSchwarzschild\u2013de Sitter black holes antievaporate.However, there is a different perturbative mode thatleads to evaporation. We show that this mode will alwaysbe excited when a pair of maximal cosmological blackholes nucleates.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1026618832525", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1053677", 
            "issn": [
              "0020-7748", 
              "1572-9575"
            ], 
            "name": "International Journal of Theoretical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "38"
          }
        ], 
        "keywords": [
          "black holes", 
          "wave functions", 
          "Sitter black holes", 
          "pair creation rate", 
          "de Sitter black holes", 
          "de Sitter space", 
          "pair creation", 
          "maximal mass", 
          "flat black holes", 
          "creation rate", 
          "universe", 
          "Sitter space", 
          "holes", 
          "one-loop effective action", 
          "S waves", 
          "evaporation", 
          "effective action", 
          "Thismakes", 
          "formalism", 
          "blackhole", 
          "alwaysbe", 
          "mode", 
          "mass", 
          "nucleation", 
          "sections", 
          "equilibrium", 
          "pairs", 
          "function", 
          "nucleates", 
          "space", 
          "horizon", 
          "size", 
          "creation", 
          "advantages", 
          "model", 
          "process", 
          "fundamental form", 
          "example", 
          "conditions", 
          "second fundamental form", 
          "form", 
          "part", 
          "argument", 
          "rate", 
          "action"
        ], 
        "name": "Primordial Black Holes: Pair Creation, Lorentzian Condition, and Evaporation", 
        "pagination": "1227-1252", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021233271"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1026618832525"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1026618832525", 
          "https://app.dimensions.ai/details/publication/pub.1021233271"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_334.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1026618832525"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1026618832525'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1026618832525'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1026618832525'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1026618832525'


     

    This table displays all metadata directly associated to this object as RDF triples.

    108 TRIPLES      21 PREDICATES      71 URIs      62 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1026618832525 schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 schema:author N9061a037ac264a7c8d227ccef117222b
    4 schema:citation sg:pub.10.1007/bf02345020
    5 schema:datePublished 1999-04
    6 schema:datePublishedReg 1999-04-01
    7 schema:description The wave function of the universe is usuallytaken to be a functional of the threemetric on aspacelike section, Σ, which is measured. It issometimes better, however, to work in the conjugaterepresentation, where the wave function depends on a quantityrelated to the second fundamental form of Σ. Thismakes it possible to ensure that Σ is part of aLorentzian universe by requiring that the argument of the wave function be purely imaginary. Wedemonstrate the advantages of this formalism first inthe well-known examples of the nucleation of a de Sitteror a Nariai universe. We then use it to calculate the pair creation rate for submaximal blackholes in de Sitter space, which had been thought tovanish semiclassically. We also study the quantumevolution of asymptotically de Sitter black holes. Forblack holes whose size is comparable to that of thecosmological horizon, this process differs significantlyfrom the evaporation of asymptotically flat black holes.Our model includes the one-loop effective action in the s-wave and large-N approximation.Black holes of the maximal mass are in equilibrium.Unexpectedly, we find that nearly maximal quantumSchwarzschild–de Sitter black holes antievaporate.However, there is a different perturbative mode thatleads to evaporation. We show that this mode will alwaysbe excited when a pair of maximal cosmological blackholes nucleates.
    8 schema:genre article
    9 schema:isAccessibleForFree false
    10 schema:isPartOf N5b49fbbbb10949748ab3dd95133ea16b
    11 N611312666fcd4646ae9f3c56cb8d6288
    12 sg:journal.1053677
    13 schema:keywords S waves
    14 Sitter black holes
    15 Sitter space
    16 Thismakes
    17 action
    18 advantages
    19 alwaysbe
    20 argument
    21 black holes
    22 blackhole
    23 conditions
    24 creation
    25 creation rate
    26 de Sitter black holes
    27 de Sitter space
    28 effective action
    29 equilibrium
    30 evaporation
    31 example
    32 flat black holes
    33 form
    34 formalism
    35 function
    36 fundamental form
    37 holes
    38 horizon
    39 mass
    40 maximal mass
    41 mode
    42 model
    43 nucleates
    44 nucleation
    45 one-loop effective action
    46 pair creation
    47 pair creation rate
    48 pairs
    49 part
    50 process
    51 rate
    52 second fundamental form
    53 sections
    54 size
    55 space
    56 universe
    57 wave functions
    58 schema:name Primordial Black Holes: Pair Creation, Lorentzian Condition, and Evaporation
    59 schema:pagination 1227-1252
    60 schema:productId Nb5d0a85b9785495db990e461a318323e
    61 Nf4d7a1315c8448bc8127bb93b4ad8b6e
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021233271
    63 https://doi.org/10.1023/a:1026618832525
    64 schema:sdDatePublished 2022-11-24T20:50
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher Ndf1ba64fa6034974a5a8d629c95939a7
    67 schema:url https://doi.org/10.1023/a:1026618832525
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N5b49fbbbb10949748ab3dd95133ea16b schema:issueNumber 4
    72 rdf:type schema:PublicationIssue
    73 N611312666fcd4646ae9f3c56cb8d6288 schema:volumeNumber 38
    74 rdf:type schema:PublicationVolume
    75 N9061a037ac264a7c8d227ccef117222b rdf:first sg:person.014230670533.11
    76 rdf:rest Naaea0b1e02dd4e198510b9b2ffc407fd
    77 Naaea0b1e02dd4e198510b9b2ffc407fd rdf:first sg:person.012212614165.22
    78 rdf:rest rdf:nil
    79 Nb5d0a85b9785495db990e461a318323e schema:name dimensions_id
    80 schema:value pub.1021233271
    81 rdf:type schema:PropertyValue
    82 Ndf1ba64fa6034974a5a8d629c95939a7 schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 Nf4d7a1315c8448bc8127bb93b4ad8b6e schema:name doi
    85 schema:value 10.1023/a:1026618832525
    86 rdf:type schema:PropertyValue
    87 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Physical Sciences
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Astronomical and Space Sciences
    92 rdf:type schema:DefinedTerm
    93 sg:journal.1053677 schema:issn 0020-7748
    94 1572-9575
    95 schema:name International Journal of Theoretical Physics
    96 schema:publisher Springer Nature
    97 rdf:type schema:Periodical
    98 sg:person.012212614165.22 schema:familyName Hawking
    99 schema:givenName Stephen W.
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22
    101 rdf:type schema:Person
    102 sg:person.014230670533.11 schema:familyName Bousso
    103 schema:givenName Raphael
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014230670533.11
    105 rdf:type schema:Person
    106 sg:pub.10.1007/bf02345020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010701796
    107 https://doi.org/10.1007/bf02345020
    108 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...