T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-10

AUTHORS

Sylvie De Buck, Chris De Wilde, Marc Van Montagu, Ann Depicker

ABSTRACT

Transgenic Arabidopsis and tobacco plants (125) derived from seven Agrobacterium-mediated transformation experiments were screened by polymerase chain reaction and DNA gel blot analysis for the presence of vector `backbone' sequences. The percentage of plants with vector DNA not belonging to the T-DNA varied between 20% and 50%. Neither the plant species, the explant type used for transformation, the replicon type nor the selection seem to have a major influence on the frequency of vector transfer. Only the border repeat sequence context could have an effect because T-DNA vector junctions were found in more than 50% of the plants of three different transformation series in which T-DNAs with octopine borders without inner border regions were used. Strikingly, many transgenic plants contain vector backbone sequences linked to the left T-DNA border as well as vector junctions with the right T-DNA border. DNA gel blots indicate that in most of these plants the complete vector sequence is integrated. We assume that integration into the plant genome of complete vector backbone sequences could be the result of a conjugative transfer initiated at the right border and subsequent continued copying at the left and right borders, called read-through. This model would imply that the left border is not frequently recognized as an initiation site for DNA transfer and that the right border is not efficiently recognized as a termination site for DNA transfer. More... »

PAGES

459-468

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1026575524345

DOI

http://dx.doi.org/10.1023/a:1026575524345

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043922159


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, 9000, Gent, Belgium", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, 9000, Gent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Buck", 
        "givenName": "Sylvie", 
        "id": "sg:person.01141370633.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141370633.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, 9000, Gent, Belgium", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, 9000, Gent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Wilde", 
        "givenName": "Chris", 
        "id": "sg:person.01045534315.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045534315.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, 9000, Gent, Belgium", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, 9000, Gent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Montagu", 
        "givenName": "Marc", 
        "id": "sg:person.01053302636.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053302636.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, 9000, Gent, Belgium", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, 9000, Gent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Depicker", 
        "givenName": "Ann", 
        "id": "sg:person.0763173373.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763173373.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00032676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021795493", 
          "https://doi.org/10.1007/bf00032676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00016438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016913018", 
          "https://doi.org/10.1007/bf00016438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00041406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027472940", 
          "https://doi.org/10.1007/bf00041406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01977353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039970010", 
          "https://doi.org/10.1007/bf01977353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005849303333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035268413", 
          "https://doi.org/10.1023/a:1005849303333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00042239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029241572", 
          "https://doi.org/10.1007/bf00042239"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-10", 
    "datePublishedReg": "2000-10-01", 
    "description": "Transgenic Arabidopsis and tobacco plants (125) derived from seven Agrobacterium-mediated transformation experiments were screened by polymerase chain reaction and DNA gel blot analysis for the presence of vector `backbone' sequences. The percentage of plants with vector DNA not belonging to the T-DNA varied between 20% and 50%. Neither the plant species, the explant type used for transformation, the replicon type nor the selection seem to have a major influence on the frequency of vector transfer. Only the border repeat sequence context could have an effect because T-DNA vector junctions were found in more than 50% of the plants of three different transformation series in which T-DNAs with octopine borders without inner border regions were used. Strikingly, many transgenic plants contain vector backbone sequences linked to the left T-DNA border as well as vector junctions with the right T-DNA border. DNA gel blots indicate that in most of these plants the complete vector sequence is integrated. We assume that integration into the plant genome of complete vector backbone sequences could be the result of a conjugative transfer initiated at the right border and subsequent continued copying at the left and right borders, called read-through. This model would imply that the left border is not frequently recognized as an initiation site for DNA transfer and that the right border is not efficiently recognized as a termination site for DNA transfer.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1026575524345", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1114043", 
        "issn": [
          "1380-3743", 
          "1572-9788"
        ], 
        "name": "Molecular Breeding", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "vector backbone sequences", 
      "T-DNA borders", 
      "transgenic plants", 
      "T-DNA", 
      "backbone sequences", 
      "DNA transfer", 
      "DNA gel blot analysis", 
      "left T-DNA border", 
      "right border", 
      "right T-DNA border", 
      "DNA gel blots", 
      "gel blot analysis", 
      "percentage of plants", 
      "transgenic Arabidopsis", 
      "plant genomes", 
      "tobacco plants", 
      "gel blots", 
      "termination sites", 
      "initiation site", 
      "sequence context", 
      "transformation experiments", 
      "vector DNA", 
      "explant type", 
      "transformation series", 
      "conjugative transfer", 
      "plants", 
      "blot analysis", 
      "genome", 
      "left border", 
      "sequence", 
      "vector sequences", 
      "presence of vectors", 
      "polymerase chain reaction", 
      "Arabidopsis", 
      "Agrobacterium", 
      "chain reaction", 
      "DNA", 
      "sites", 
      "replicon types", 
      "blot", 
      "vector transfer", 
      "junction", 
      "major influence", 
      "selection", 
      "vector", 
      "transfer", 
      "region", 
      "types", 
      "border", 
      "presence", 
      "transformation", 
      "analysis", 
      "experiments", 
      "effect", 
      "border region", 
      "percentage", 
      "results", 
      "integration", 
      "reaction", 
      "context", 
      "frequency", 
      "influence", 
      "model", 
      "series"
    ], 
    "name": "T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation", 
    "pagination": "459-468", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043922159"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1026575524345"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1026575524345", 
      "https://app.dimensions.ai/details/publication/pub.1043922159"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_318.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1026575524345"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1026575524345'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1026575524345'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1026575524345'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1026575524345'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      95 URIs      81 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1026575524345 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Na0ad53a260094fdabaf87132f2b940f8
4 schema:citation sg:pub.10.1007/bf00016438
5 sg:pub.10.1007/bf00032676
6 sg:pub.10.1007/bf00041406
7 sg:pub.10.1007/bf00042239
8 sg:pub.10.1007/bf01977353
9 sg:pub.10.1023/a:1005849303333
10 schema:datePublished 2000-10
11 schema:datePublishedReg 2000-10-01
12 schema:description Transgenic Arabidopsis and tobacco plants (125) derived from seven Agrobacterium-mediated transformation experiments were screened by polymerase chain reaction and DNA gel blot analysis for the presence of vector `backbone' sequences. The percentage of plants with vector DNA not belonging to the T-DNA varied between 20% and 50%. Neither the plant species, the explant type used for transformation, the replicon type nor the selection seem to have a major influence on the frequency of vector transfer. Only the border repeat sequence context could have an effect because T-DNA vector junctions were found in more than 50% of the plants of three different transformation series in which T-DNAs with octopine borders without inner border regions were used. Strikingly, many transgenic plants contain vector backbone sequences linked to the left T-DNA border as well as vector junctions with the right T-DNA border. DNA gel blots indicate that in most of these plants the complete vector sequence is integrated. We assume that integration into the plant genome of complete vector backbone sequences could be the result of a conjugative transfer initiated at the right border and subsequent continued copying at the left and right borders, called read-through. This model would imply that the left border is not frequently recognized as an initiation site for DNA transfer and that the right border is not efficiently recognized as a termination site for DNA transfer.
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf N1444922f11d9499ca23158049f02325c
16 Nc5080f956c62441795910112c3297e76
17 sg:journal.1114043
18 schema:keywords Agrobacterium
19 Arabidopsis
20 DNA
21 DNA gel blot analysis
22 DNA gel blots
23 DNA transfer
24 T-DNA
25 T-DNA borders
26 analysis
27 backbone sequences
28 blot
29 blot analysis
30 border
31 border region
32 chain reaction
33 conjugative transfer
34 context
35 effect
36 experiments
37 explant type
38 frequency
39 gel blot analysis
40 gel blots
41 genome
42 influence
43 initiation site
44 integration
45 junction
46 left T-DNA border
47 left border
48 major influence
49 model
50 percentage
51 percentage of plants
52 plant genomes
53 plants
54 polymerase chain reaction
55 presence
56 presence of vectors
57 reaction
58 region
59 replicon types
60 results
61 right T-DNA border
62 right border
63 selection
64 sequence
65 sequence context
66 series
67 sites
68 termination sites
69 tobacco plants
70 transfer
71 transformation
72 transformation experiments
73 transformation series
74 transgenic Arabidopsis
75 transgenic plants
76 types
77 vector
78 vector DNA
79 vector backbone sequences
80 vector sequences
81 vector transfer
82 schema:name T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation
83 schema:pagination 459-468
84 schema:productId N733318b016c34c54b351d4efb8908c2e
85 Nbd76e468cfb44dfab7629f67ac0a5fc9
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043922159
87 https://doi.org/10.1023/a:1026575524345
88 schema:sdDatePublished 2022-10-01T06:31
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N2ad5fcb8bd444ecb8842be1c8a18dd45
91 schema:url https://doi.org/10.1023/a:1026575524345
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N1444922f11d9499ca23158049f02325c schema:volumeNumber 6
96 rdf:type schema:PublicationVolume
97 N2ad5fcb8bd444ecb8842be1c8a18dd45 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N733318b016c34c54b351d4efb8908c2e schema:name doi
100 schema:value 10.1023/a:1026575524345
101 rdf:type schema:PropertyValue
102 Na0ad53a260094fdabaf87132f2b940f8 rdf:first sg:person.01141370633.87
103 rdf:rest Nbae701e8571b4a15bfa48e51bbe82ab2
104 Nabca10fa4d5641cfaed73b58b7bcd317 rdf:first sg:person.0763173373.46
105 rdf:rest rdf:nil
106 Nbae701e8571b4a15bfa48e51bbe82ab2 rdf:first sg:person.01045534315.81
107 rdf:rest Nbaff4049206f440786aae49b23829da4
108 Nbaff4049206f440786aae49b23829da4 rdf:first sg:person.01053302636.34
109 rdf:rest Nabca10fa4d5641cfaed73b58b7bcd317
110 Nbd76e468cfb44dfab7629f67ac0a5fc9 schema:name dimensions_id
111 schema:value pub.1043922159
112 rdf:type schema:PropertyValue
113 Nc5080f956c62441795910112c3297e76 schema:issueNumber 5
114 rdf:type schema:PublicationIssue
115 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
116 schema:name Biological Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
119 schema:name Genetics
120 rdf:type schema:DefinedTerm
121 sg:journal.1114043 schema:issn 1380-3743
122 1572-9788
123 schema:name Molecular Breeding
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.01045534315.81 schema:affiliation grid-institutes:None
127 schema:familyName De Wilde
128 schema:givenName Chris
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045534315.81
130 rdf:type schema:Person
131 sg:person.01053302636.34 schema:affiliation grid-institutes:None
132 schema:familyName Van Montagu
133 schema:givenName Marc
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053302636.34
135 rdf:type schema:Person
136 sg:person.01141370633.87 schema:affiliation grid-institutes:None
137 schema:familyName De Buck
138 schema:givenName Sylvie
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141370633.87
140 rdf:type schema:Person
141 sg:person.0763173373.46 schema:affiliation grid-institutes:None
142 schema:familyName Depicker
143 schema:givenName Ann
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763173373.46
145 rdf:type schema:Person
146 sg:pub.10.1007/bf00016438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016913018
147 https://doi.org/10.1007/bf00016438
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/bf00032676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021795493
150 https://doi.org/10.1007/bf00032676
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/bf00041406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027472940
153 https://doi.org/10.1007/bf00041406
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/bf00042239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029241572
156 https://doi.org/10.1007/bf00042239
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/bf01977353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039970010
159 https://doi.org/10.1007/bf01977353
160 rdf:type schema:CreativeWork
161 sg:pub.10.1023/a:1005849303333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035268413
162 https://doi.org/10.1023/a:1005849303333
163 rdf:type schema:CreativeWork
164 grid-institutes:None schema:alternateName Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, 9000, Gent, Belgium
165 schema:name Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, 9000, Gent, Belgium
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...