New Approaches to Spoken Document Retrieval View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-10

AUTHORS

Martin Wechsler, Eugen Munteanu, Peter Schäuble

ABSTRACT

This paper presents four novel techniques for open-vocabulary spoken document retrieval: a method to detect slots that possibly contain a query feature; a method to estimate occurrence probabilities; a technique that we call collection-wide probability re-estimation and a weighting scheme which takes advantage of the fact that long query features are detected more reliably. These four techniques have been evaluated using the TREC-6 spoken document retrieval test collection to determine the improvements in retrieval effectiveness with respect to a baseline retrieval method. Results show that the retrieval effectiveness can be improved considerably despite the large number of speech recognition errors. More... »

PAGES

173-188

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1026512724855

DOI

http://dx.doi.org/10.1023/a:1026512724855

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039318796


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Mckinsey and Company, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wechsler", 
        "givenName": "Martin", 
        "id": "sg:person.016505215437.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016505215437.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Eugen Muntiany, Eurospider Information Technology A6, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Munteanu", 
        "givenName": "Eugen", 
        "id": "sg:person.07427133545.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07427133545.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Eurospider Information Technology (Switzerland)", 
          "id": "https://www.grid.ac/institutes/grid.433769.c", 
          "name": [
            "Eurospider Information Technology A6, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sch\u00e4uble", 
        "givenName": "Peter", 
        "id": "sg:person.0670254567.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670254567.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/278459.258544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029650653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/243199.243206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032416718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/243199.243208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033593408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/244130.244232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035981550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/290941.290950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043681371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/133160.133194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047011472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/215206.215379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047055919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.279192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218427"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-10", 
    "datePublishedReg": "2000-10-01", 
    "description": "This paper presents four novel techniques for open-vocabulary spoken document retrieval: a method to detect slots that possibly contain a query feature; a method to estimate occurrence probabilities; a technique that we call collection-wide probability re-estimation and a weighting scheme which takes advantage of the fact that long query features are detected more reliably. These four techniques have been evaluated using the TREC-6 spoken document retrieval test collection to determine the improvements in retrieval effectiveness with respect to a baseline retrieval method. Results show that the retrieval effectiveness can be improved considerably despite the large number of speech recognition errors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1026512724855", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1023664", 
        "issn": [
          "1386-4564", 
          "1573-7659"
        ], 
        "name": "Information Retrieval Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "New Approaches to Spoken Document Retrieval", 
    "pagination": "173-188", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bb4b2ecff027d11744caf9c752a8c67d77ba163e7d014dc488df7d67262bb6e2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1026512724855"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039318796"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1026512724855", 
      "https://app.dimensions.ai/details/publication/pub.1039318796"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1026512724855"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1026512724855'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1026512724855'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1026512724855'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1026512724855'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1026512724855 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ncbb8776e72d84a45a297a42bf649ef28
4 schema:citation https://doi.org/10.1109/72.279192
5 https://doi.org/10.1145/133160.133194
6 https://doi.org/10.1145/215206.215379
7 https://doi.org/10.1145/243199.243206
8 https://doi.org/10.1145/243199.243208
9 https://doi.org/10.1145/244130.244232
10 https://doi.org/10.1145/278459.258544
11 https://doi.org/10.1145/290941.290950
12 schema:datePublished 2000-10
13 schema:datePublishedReg 2000-10-01
14 schema:description This paper presents four novel techniques for open-vocabulary spoken document retrieval: a method to detect slots that possibly contain a query feature; a method to estimate occurrence probabilities; a technique that we call collection-wide probability re-estimation and a weighting scheme which takes advantage of the fact that long query features are detected more reliably. These four techniques have been evaluated using the TREC-6 spoken document retrieval test collection to determine the improvements in retrieval effectiveness with respect to a baseline retrieval method. Results show that the retrieval effectiveness can be improved considerably despite the large number of speech recognition errors.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N8176229eaf9f4e08bbe78fd8427be78d
19 Nd0af2b13fe6543778b7bb1faf660ea53
20 sg:journal.1023664
21 schema:name New Approaches to Spoken Document Retrieval
22 schema:pagination 173-188
23 schema:productId Naefdeff3d2f94011b612eb013f5d2d00
24 Nd9f996ee478944299afa89fec1579fd8
25 Nf68007432d894513b33bb0380d55e1c8
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039318796
27 https://doi.org/10.1023/a:1026512724855
28 schema:sdDatePublished 2019-04-10T21:42
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N0305eca95d564483b807f5a8484fe0f0
31 schema:url http://link.springer.com/10.1023%2FA%3A1026512724855
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0305eca95d564483b807f5a8484fe0f0 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N2fd4c62c9426484f8e241d2908f3a0e9 schema:name Eugen Muntiany, Eurospider Information Technology A6, Zurich, Switzerland
38 rdf:type schema:Organization
39 N3732f5e8953d4214a7a391a0ce9a749c schema:name Mckinsey and Company, Switzerland
40 rdf:type schema:Organization
41 N4ef5c5f6b2334d45beb4d227f8b4df6c rdf:first sg:person.0670254567.14
42 rdf:rest rdf:nil
43 N8176229eaf9f4e08bbe78fd8427be78d schema:volumeNumber 3
44 rdf:type schema:PublicationVolume
45 N9132c118f0f3482c9cc3ae8bcc02fd5e rdf:first sg:person.07427133545.75
46 rdf:rest N4ef5c5f6b2334d45beb4d227f8b4df6c
47 Naefdeff3d2f94011b612eb013f5d2d00 schema:name doi
48 schema:value 10.1023/a:1026512724855
49 rdf:type schema:PropertyValue
50 Ncbb8776e72d84a45a297a42bf649ef28 rdf:first sg:person.016505215437.73
51 rdf:rest N9132c118f0f3482c9cc3ae8bcc02fd5e
52 Nd0af2b13fe6543778b7bb1faf660ea53 schema:issueNumber 3
53 rdf:type schema:PublicationIssue
54 Nd9f996ee478944299afa89fec1579fd8 schema:name dimensions_id
55 schema:value pub.1039318796
56 rdf:type schema:PropertyValue
57 Nf68007432d894513b33bb0380d55e1c8 schema:name readcube_id
58 schema:value bb4b2ecff027d11744caf9c752a8c67d77ba163e7d014dc488df7d67262bb6e2
59 rdf:type schema:PropertyValue
60 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
61 schema:name Information and Computing Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
64 schema:name Artificial Intelligence and Image Processing
65 rdf:type schema:DefinedTerm
66 sg:journal.1023664 schema:issn 1386-4564
67 1573-7659
68 schema:name Information Retrieval Journal
69 rdf:type schema:Periodical
70 sg:person.016505215437.73 schema:affiliation N3732f5e8953d4214a7a391a0ce9a749c
71 schema:familyName Wechsler
72 schema:givenName Martin
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016505215437.73
74 rdf:type schema:Person
75 sg:person.0670254567.14 schema:affiliation https://www.grid.ac/institutes/grid.433769.c
76 schema:familyName Schäuble
77 schema:givenName Peter
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670254567.14
79 rdf:type schema:Person
80 sg:person.07427133545.75 schema:affiliation N2fd4c62c9426484f8e241d2908f3a0e9
81 schema:familyName Munteanu
82 schema:givenName Eugen
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07427133545.75
84 rdf:type schema:Person
85 https://doi.org/10.1109/72.279192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218427
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1145/133160.133194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047011472
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1145/215206.215379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047055919
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1145/243199.243206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032416718
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1145/243199.243208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033593408
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1145/244130.244232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035981550
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1145/278459.258544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029650653
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1145/290941.290950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043681371
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.433769.c schema:alternateName Eurospider Information Technology (Switzerland)
102 schema:name Eurospider Information Technology A6, Zurich, Switzerland
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...