Adaptive CFAR PI Processor for Radar Target Detection in Pulse Jamming View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-11-01

AUTHORS

Vera P. Behar, Christo A. Kabakchiev, Lyubka A. Doukovska

ABSTRACT

A new parallel algorithm for signal processing and a parallel systolic architecture of a CFAR processor with adaptive post detection integration (API) are presented in this paper. The processor proposed is used for effective target detection in a single range resolution cell of a radar when echoes from small airborne targets are performed in conditions of pulse jamming. The main property of the algorithm proposed is its ability automatically to determine and censor the unwanted samples corrupted by pulse jamming in both the two-dimensional reference window and the test cell before noise level estimation. In such a way the influence of pulse jamming environment over adaptive thresholding is reduced to minimum. Statistical analysis of the algorithm for target detection shows that the signal-to-noise ratio losses are insignificant even if the power and the frequency of pulse jamming are extremely high. The systolic architecture of the CFAR API is designed. Basic measures of the systolic architecture are the number of processor elements, the computational time and the speed-up needed for real-time implementation. More... »

PAGES

383-396

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1026511702700

DOI

http://dx.doi.org/10.1023/a:1026511702700

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025505636


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dept. of Biomedical Engineering, Institute of Technology, 32000, Haifa, Israel", 
          "id": "http://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Dept. of Biomedical Engineering, Institute of Technology, 32000, Haifa, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Behar", 
        "givenName": "Vera P.", 
        "id": "sg:person.014512504451.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014512504451.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information Technologies, BAS, \u201cAcad. G. Bonchev\u201d Str., bl. 2, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.493364.f", 
          "name": [
            "Institute of Information Technologies, BAS, \u201cAcad. G. Bonchev\u201d Str., bl. 2, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kabakchiev", 
        "givenName": "Christo A.", 
        "id": "sg:person.010201707621.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010201707621.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information Technologies, BAS, \u201cAcad. G. Bonchev\u201d Str., bl. 2, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.493364.f", 
          "name": [
            "Institute of Information Technologies, BAS, \u201cAcad. G. Bonchev\u201d Str., bl. 2, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doukovska", 
        "givenName": "Lyubka A.", 
        "id": "sg:person.015766001711.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015766001711.73"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-11-01", 
    "datePublishedReg": "2000-11-01", 
    "description": "A new parallel algorithm for signal processing and a parallel systolic architecture of a CFAR processor with adaptive post detection integration (API) are presented in this paper. The processor proposed is used for effective target detection in a single range resolution cell of a radar when echoes from small airborne targets are performed in conditions of pulse jamming. The main property of the algorithm proposed is its ability automatically to determine and censor the unwanted samples corrupted by pulse jamming in both the two-dimensional reference window and the test cell before noise level estimation. In such a way the influence of pulse jamming environment over adaptive thresholding is reduced to minimum. Statistical analysis of the algorithm for target detection shows that the signal-to-noise ratio losses are insignificant even if the power and the frequency of pulse jamming are extremely high. The systolic architecture of the CFAR API is designed. Basic measures of the systolic architecture are the number of processor elements, the computational time and the speed-up needed for real-time implementation.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1026511702700", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297359", 
        "issn": [
          "0922-5773", 
          "1573-109X"
        ], 
        "name": "Journal of Signal Processing Systems", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "keywords": [
      "adaptive post detection integration", 
      "radar target detection", 
      "target detection", 
      "real-time implementation", 
      "pulse jamming", 
      "computational time", 
      "new parallel algorithm", 
      "noise ratio (SNR) loss", 
      "noise level estimation", 
      "range resolution cell", 
      "parallel systolic architecture", 
      "main properties", 
      "CFAR processor", 
      "parallel algorithm", 
      "signal processing", 
      "ratio loss", 
      "algorithm", 
      "effective target detection", 
      "statistical analysis", 
      "resolution cell", 
      "level estimation", 
      "airborne targets", 
      "systolic architecture", 
      "unwanted samples", 
      "post detection integration", 
      "estimation", 
      "processors", 
      "jamming", 
      "adaptive thresholding", 
      "processor elements", 
      "reference window", 
      "basic measures", 
      "thresholding", 
      "radar", 
      "architecture", 
      "implementation", 
      "signals", 
      "integration", 
      "minimum", 
      "power", 
      "number", 
      "conditions", 
      "properties", 
      "way", 
      "elements", 
      "detection", 
      "analysis", 
      "measures", 
      "influence of pulse", 
      "time", 
      "processing", 
      "environment", 
      "window", 
      "frequency", 
      "echoes", 
      "pulses", 
      "ability", 
      "test cell", 
      "influence", 
      "target", 
      "loss", 
      "samples", 
      "cells", 
      "paper", 
      "detection integration", 
      "single range resolution cell", 
      "small airborne targets", 
      "two-dimensional reference window", 
      "CFAR API", 
      "Adaptive CFAR PI Processor", 
      "CFAR PI Processor", 
      "PI Processor"
    ], 
    "name": "Adaptive CFAR PI Processor for Radar Target Detection in Pulse Jamming", 
    "pagination": "383-396", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025505636"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1026511702700"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1026511702700", 
      "https://app.dimensions.ai/details/publication/pub.1025505636"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_345.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1026511702700"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1026511702700'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1026511702700'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1026511702700'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1026511702700'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      97 URIs      89 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1026511702700 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N29d1cff8ea7c43b2b8802f0c69f9e6c2
4 schema:datePublished 2000-11-01
5 schema:datePublishedReg 2000-11-01
6 schema:description A new parallel algorithm for signal processing and a parallel systolic architecture of a CFAR processor with adaptive post detection integration (API) are presented in this paper. The processor proposed is used for effective target detection in a single range resolution cell of a radar when echoes from small airborne targets are performed in conditions of pulse jamming. The main property of the algorithm proposed is its ability automatically to determine and censor the unwanted samples corrupted by pulse jamming in both the two-dimensional reference window and the test cell before noise level estimation. In such a way the influence of pulse jamming environment over adaptive thresholding is reduced to minimum. Statistical analysis of the algorithm for target detection shows that the signal-to-noise ratio losses are insignificant even if the power and the frequency of pulse jamming are extremely high. The systolic architecture of the CFAR API is designed. Basic measures of the systolic architecture are the number of processor elements, the computational time and the speed-up needed for real-time implementation.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N0665c30ac642474ab4f6dcd884a706a3
11 N79985fe3d00445dd944d30406cd09b5f
12 sg:journal.1297359
13 schema:keywords Adaptive CFAR PI Processor
14 CFAR API
15 CFAR PI Processor
16 CFAR processor
17 PI Processor
18 ability
19 adaptive post detection integration
20 adaptive thresholding
21 airborne targets
22 algorithm
23 analysis
24 architecture
25 basic measures
26 cells
27 computational time
28 conditions
29 detection
30 detection integration
31 echoes
32 effective target detection
33 elements
34 environment
35 estimation
36 frequency
37 implementation
38 influence
39 influence of pulse
40 integration
41 jamming
42 level estimation
43 loss
44 main properties
45 measures
46 minimum
47 new parallel algorithm
48 noise level estimation
49 noise ratio (SNR) loss
50 number
51 paper
52 parallel algorithm
53 parallel systolic architecture
54 post detection integration
55 power
56 processing
57 processor elements
58 processors
59 properties
60 pulse jamming
61 pulses
62 radar
63 radar target detection
64 range resolution cell
65 ratio loss
66 real-time implementation
67 reference window
68 resolution cell
69 samples
70 signal processing
71 signals
72 single range resolution cell
73 small airborne targets
74 statistical analysis
75 systolic architecture
76 target
77 target detection
78 test cell
79 thresholding
80 time
81 two-dimensional reference window
82 unwanted samples
83 way
84 window
85 schema:name Adaptive CFAR PI Processor for Radar Target Detection in Pulse Jamming
86 schema:pagination 383-396
87 schema:productId N444368cb14a04474acc931c21f115bf1
88 Nc853f6598aad4f1784289c85b215d9b5
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025505636
90 https://doi.org/10.1023/a:1026511702700
91 schema:sdDatePublished 2022-01-01T18:11
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N697e7e76acfd45428b93f1298378cbe0
94 schema:url https://doi.org/10.1023/a:1026511702700
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N0665c30ac642474ab4f6dcd884a706a3 schema:volumeNumber 26
99 rdf:type schema:PublicationVolume
100 N29d1cff8ea7c43b2b8802f0c69f9e6c2 rdf:first sg:person.014512504451.48
101 rdf:rest Nb4ffc562c8c146dc88f829e4d2c06425
102 N444368cb14a04474acc931c21f115bf1 schema:name doi
103 schema:value 10.1023/a:1026511702700
104 rdf:type schema:PropertyValue
105 N5db87e6413684e42a20807acf68881b7 rdf:first sg:person.015766001711.73
106 rdf:rest rdf:nil
107 N697e7e76acfd45428b93f1298378cbe0 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 N79985fe3d00445dd944d30406cd09b5f schema:issueNumber 3
110 rdf:type schema:PublicationIssue
111 Nb4ffc562c8c146dc88f829e4d2c06425 rdf:first sg:person.010201707621.03
112 rdf:rest N5db87e6413684e42a20807acf68881b7
113 Nc853f6598aad4f1784289c85b215d9b5 schema:name dimensions_id
114 schema:value pub.1025505636
115 rdf:type schema:PropertyValue
116 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
117 schema:name Engineering
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
120 schema:name Electrical and Electronic Engineering
121 rdf:type schema:DefinedTerm
122 sg:journal.1297359 schema:issn 0922-5773
123 1573-109X
124 schema:name Journal of Signal Processing Systems
125 schema:publisher Springer Nature
126 rdf:type schema:Periodical
127 sg:person.010201707621.03 schema:affiliation grid-institutes:grid.493364.f
128 schema:familyName Kabakchiev
129 schema:givenName Christo A.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010201707621.03
131 rdf:type schema:Person
132 sg:person.014512504451.48 schema:affiliation grid-institutes:grid.6451.6
133 schema:familyName Behar
134 schema:givenName Vera P.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014512504451.48
136 rdf:type schema:Person
137 sg:person.015766001711.73 schema:affiliation grid-institutes:grid.493364.f
138 schema:familyName Doukovska
139 schema:givenName Lyubka A.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015766001711.73
141 rdf:type schema:Person
142 grid-institutes:grid.493364.f schema:alternateName Institute of Information Technologies, BAS, “Acad. G. Bonchev” Str., bl. 2, 1113, Sofia, Bulgaria
143 schema:name Institute of Information Technologies, BAS, “Acad. G. Bonchev” Str., bl. 2, 1113, Sofia, Bulgaria
144 rdf:type schema:Organization
145 grid-institutes:grid.6451.6 schema:alternateName Dept. of Biomedical Engineering, Institute of Technology, 32000, Haifa, Israel
146 schema:name Dept. of Biomedical Engineering, Institute of Technology, 32000, Haifa, Israel
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...