Complete Systems of Lines on a Hermitian Surface over a Finite Field View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-09

AUTHORS

G. L. Ebert, J. W. P. Hirschfeld

ABSTRACT

The aim is to find the maximum size of a set of mutually ske lines on a nonsingular Hermitian surface in PG(3, q) for various values of q. For q = 9 such extremal sets are intricate combinatorial structures intimately connected ith hemisystems, subreguli, and commuting null polarities. It turns out they are also closely related to the classical quartic surface of Kummer. Some bounds and examples are also given in the general case. More... »

PAGES

253-268

References to SciGraph publications

  • 1996-05. m-Systems and partialm-systems of polar spaces in DESIGNS, CODES AND CRYPTOGRAPHY
  • 1965-12. Forme e geometrie hermitiane, con particolare riguardo al caso finito in ANNALI DI MATEMATICA PURA ED APPLICATA (1923 -)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1026439528939

    DOI

    http://dx.doi.org/10.1023/a:1026439528939

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033866841


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Sciences, University of Delaare, 19716, Neark, Delaware, U.S.A", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Mathematical Sciences, University of Delaare, 19716, Neark, Delaware, U.S.A"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ebert", 
            "givenName": "G. L.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mathematical Sciences, University of Sussex, Brighton, BN1 9QH, East Sussex, U.K", 
              "id": "http://www.grid.ac/institutes/grid.12082.39", 
              "name": [
                "School of Mathematical Sciences, University of Sussex, Brighton, BN1 9QH, East Sussex, U.K"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hirschfeld", 
            "givenName": "J. W. P.", 
            "id": "sg:person.012124570705.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124570705.64"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00130581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004681324", 
              "https://doi.org/10.1007/bf00130581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02410088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024477870", 
              "https://doi.org/10.1007/bf02410088"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-09", 
        "datePublishedReg": "1999-09-01", 
        "description": "The aim is to find the maximum size of a set of mutually ske lines on a nonsingular Hermitian surface in PG(3, q) for various values of q. For q = 9 such extremal sets are intricate combinatorial structures intimately connected ith hemisystems, subreguli, and commuting null polarities. It turns out they are also closely related to the classical quartic surface of Kummer. Some bounds and examples are also given in the general case.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1026439528939", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136552", 
            "issn": [
              "0925-1022", 
              "1573-7586"
            ], 
            "name": "Designs, Codes and Cryptography", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "keywords": [
          "complete system", 
          "surface", 
          "maximum size", 
          "field", 
          "size", 
          "structure", 
          "general case", 
          "system", 
          "values", 
          "polarity", 
          "example", 
          "set", 
          "lines", 
          "bounds", 
          "cases", 
          "aim", 
          "Kummer", 
          "finite field", 
          "quartic surface", 
          "combinatorial structure", 
          "Hermitian surface", 
          "extremal sets", 
          "hemisystems", 
          "ske lines", 
          "nonsingular Hermitian surface", 
          "such extremal sets", 
          "intricate combinatorial structures", 
          "ith hemisystems", 
          "null polarities", 
          "classical quartic surface"
        ], 
        "name": "Complete Systems of Lines on a Hermitian Surface over a Finite Field", 
        "pagination": "253-268", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033866841"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1026439528939"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1026439528939", 
          "https://app.dimensions.ai/details/publication/pub.1033866841"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_330.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1026439528939"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1026439528939'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1026439528939'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1026439528939'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1026439528939'


     

    This table displays all metadata directly associated to this object as RDF triples.

    105 TRIPLES      22 PREDICATES      58 URIs      48 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1026439528939 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nf3f92639b5494b86b8f7b3a0e8888a74
    4 schema:citation sg:pub.10.1007/bf00130581
    5 sg:pub.10.1007/bf02410088
    6 schema:datePublished 1999-09
    7 schema:datePublishedReg 1999-09-01
    8 schema:description The aim is to find the maximum size of a set of mutually ske lines on a nonsingular Hermitian surface in PG(3, q) for various values of q. For q = 9 such extremal sets are intricate combinatorial structures intimately connected ith hemisystems, subreguli, and commuting null polarities. It turns out they are also closely related to the classical quartic surface of Kummer. Some bounds and examples are also given in the general case.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N93fac9b4acc24072860e0ae7fea1741d
    13 Nc1b5f9d3fc60465abe1f771a1182e0a7
    14 sg:journal.1136552
    15 schema:keywords Hermitian surface
    16 Kummer
    17 aim
    18 bounds
    19 cases
    20 classical quartic surface
    21 combinatorial structure
    22 complete system
    23 example
    24 extremal sets
    25 field
    26 finite field
    27 general case
    28 hemisystems
    29 intricate combinatorial structures
    30 ith hemisystems
    31 lines
    32 maximum size
    33 nonsingular Hermitian surface
    34 null polarities
    35 polarity
    36 quartic surface
    37 set
    38 size
    39 ske lines
    40 structure
    41 such extremal sets
    42 surface
    43 system
    44 values
    45 schema:name Complete Systems of Lines on a Hermitian Surface over a Finite Field
    46 schema:pagination 253-268
    47 schema:productId N2a1104db75034484887855c9f3ae948f
    48 N8d0b3a657a3142c19e7315d5c4c9a067
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033866841
    50 https://doi.org/10.1023/a:1026439528939
    51 schema:sdDatePublished 2022-01-01T18:10
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher N9708daf5d57d454e86843fe656321224
    54 schema:url https://doi.org/10.1023/a:1026439528939
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N2a1104db75034484887855c9f3ae948f schema:name doi
    59 schema:value 10.1023/a:1026439528939
    60 rdf:type schema:PropertyValue
    61 N8d0b3a657a3142c19e7315d5c4c9a067 schema:name dimensions_id
    62 schema:value pub.1033866841
    63 rdf:type schema:PropertyValue
    64 N93fac9b4acc24072860e0ae7fea1741d schema:volumeNumber 17
    65 rdf:type schema:PublicationVolume
    66 N9708daf5d57d454e86843fe656321224 schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 Nbd1d70718700469ca947df75e55507b9 schema:affiliation grid-institutes:None
    69 schema:familyName Ebert
    70 schema:givenName G. L.
    71 rdf:type schema:Person
    72 Nc1b5f9d3fc60465abe1f771a1182e0a7 schema:issueNumber 1-3
    73 rdf:type schema:PublicationIssue
    74 Ne3b0e199f0c74983a4bea9def3fe107b rdf:first sg:person.012124570705.64
    75 rdf:rest rdf:nil
    76 Nf3f92639b5494b86b8f7b3a0e8888a74 rdf:first Nbd1d70718700469ca947df75e55507b9
    77 rdf:rest Ne3b0e199f0c74983a4bea9def3fe107b
    78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Mathematical Sciences
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Pure Mathematics
    83 rdf:type schema:DefinedTerm
    84 sg:journal.1136552 schema:issn 0925-1022
    85 1573-7586
    86 schema:name Designs, Codes and Cryptography
    87 schema:publisher Springer Nature
    88 rdf:type schema:Periodical
    89 sg:person.012124570705.64 schema:affiliation grid-institutes:grid.12082.39
    90 schema:familyName Hirschfeld
    91 schema:givenName J. W. P.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124570705.64
    93 rdf:type schema:Person
    94 sg:pub.10.1007/bf00130581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004681324
    95 https://doi.org/10.1007/bf00130581
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/bf02410088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024477870
    98 https://doi.org/10.1007/bf02410088
    99 rdf:type schema:CreativeWork
    100 grid-institutes:None schema:alternateName Department of Mathematical Sciences, University of Delaare, 19716, Neark, Delaware, U.S.A
    101 schema:name Department of Mathematical Sciences, University of Delaare, 19716, Neark, Delaware, U.S.A
    102 rdf:type schema:Organization
    103 grid-institutes:grid.12082.39 schema:alternateName School of Mathematical Sciences, University of Sussex, Brighton, BN1 9QH, East Sussex, U.K
    104 schema:name School of Mathematical Sciences, University of Sussex, Brighton, BN1 9QH, East Sussex, U.K
    105 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...