Ontology type: schema:ScholarlyArticle
1999-09
AUTHORSG. L. Ebert, J. W. P. Hirschfeld
ABSTRACTThe aim is to find the maximum size of a set of mutually ske lines on a nonsingular Hermitian surface in PG(3, q) for various values of q. For q = 9 such extremal sets are intricate combinatorial structures intimately connected ith hemisystems, subreguli, and commuting null polarities. It turns out they are also closely related to the classical quartic surface of Kummer. Some bounds and examples are also given in the general case. More... »
PAGES253-268
http://scigraph.springernature.com/pub.10.1023/a:1026439528939
DOIhttp://dx.doi.org/10.1023/a:1026439528939
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1033866841
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematical Sciences, University of Delaare, 19716, Neark, Delaware, U.S.A",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Department of Mathematical Sciences, University of Delaare, 19716, Neark, Delaware, U.S.A"
],
"type": "Organization"
},
"familyName": "Ebert",
"givenName": "G. L.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Mathematical Sciences, University of Sussex, Brighton, BN1 9QH, East Sussex, U.K",
"id": "http://www.grid.ac/institutes/grid.12082.39",
"name": [
"School of Mathematical Sciences, University of Sussex, Brighton, BN1 9QH, East Sussex, U.K"
],
"type": "Organization"
},
"familyName": "Hirschfeld",
"givenName": "J. W. P.",
"id": "sg:person.012124570705.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124570705.64"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00130581",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004681324",
"https://doi.org/10.1007/bf00130581"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02410088",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024477870",
"https://doi.org/10.1007/bf02410088"
],
"type": "CreativeWork"
}
],
"datePublished": "1999-09",
"datePublishedReg": "1999-09-01",
"description": "The aim is to find the maximum size of a set of mutually ske lines on a nonsingular Hermitian surface in PG(3, q) for various values of q. For q = 9 such extremal sets are intricate combinatorial structures intimately connected ith hemisystems, subreguli, and commuting null polarities. It turns out they are also closely related to the classical quartic surface of Kummer. Some bounds and examples are also given in the general case.",
"genre": "article",
"id": "sg:pub.10.1023/a:1026439528939",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136552",
"issn": [
"0925-1022",
"1573-7586"
],
"name": "Designs, Codes and Cryptography",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1-3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "17"
}
],
"keywords": [
"Hermitian surface",
"combinatorial structure",
"finite field",
"general case",
"extremal sets",
"quartic surfaces",
"complete system",
"bounds",
"hemisystems",
"Kummer",
"maximum size",
"set",
"surface",
"field",
"system",
"structure",
"lines",
"cases",
"values",
"size",
"example",
"polarity",
"aim"
],
"name": "Complete Systems of Lines on a Hermitian Surface over a Finite Field",
"pagination": "253-268",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1033866841"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1023/a:1026439528939"
]
}
],
"sameAs": [
"https://doi.org/10.1023/a:1026439528939",
"https://app.dimensions.ai/details/publication/pub.1033866841"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:52",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_338.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1023/a:1026439528939"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1026439528939'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1026439528939'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1026439528939'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1026439528939'
This table displays all metadata directly associated to this object as RDF triples.
98 TRIPLES
22 PREDICATES
51 URIs
41 LITERALS
6 BLANK NODES