On the Signs of Fourier Coefficients of Cusp Forms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-03

AUTHORS

Marvin Knopp, Winfried Kohnen, Wladimir Pribitkin

ABSTRACT

Let Γ be a discrete subgroup of SL(2, ) with a fundamental region of finite hyperbolic volume. (Then, Γ is a finitely generated Fuchsian group of the first kind.) Letbe a nontrivial cusp form, with multiplier system, with respect to Γ. Responding to a question of Geoffrey Mason, the authors present simple proofs of the following two results, under natural restrictions upon Γ. Theorem.If the coefficients a(n) are real for all n, then the sequence {a(n)} has infinitely many changes of sign. Theorem.Either the sequence {Re a(n)} has infinitely many sign changes or Re a(n) = 0 for all n. The same holds for the sequence {Im a(n)}. More... »

PAGES

269-277

References to SciGraph publications

  • 1906-12. Über einen Satz von Tschebyschef in MATHEMATISCHE ANNALEN
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1026207515396

    DOI

    http://dx.doi.org/10.1023/a:1026207515396

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1000119339


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Temple University", 
              "id": "https://www.grid.ac/institutes/grid.264727.2", 
              "name": [
                "Department of Mathematics, Temple University, Broad St. and Montgomery Ave., 19122, Philadelphia, Pennsylvania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Knopp", 
            "givenName": "Marvin", 
            "id": "sg:person.014401377773.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014401377773.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Heidelberg University", 
              "id": "https://www.grid.ac/institutes/grid.7700.0", 
              "name": [
                "Mathematisches Institut, INF 288, Universit\u00e4t at Heidelberg, D-69120, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kohnen", 
            "givenName": "Winfried", 
            "id": "sg:person.011543774375.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011543774375.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Haverford College", 
              "id": "https://www.grid.ac/institutes/grid.256868.7", 
              "name": [
                "Department of Mathematics, Haverford College, 370 Lancaster Ave., 19041, Haverford, Pennsylvania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pribitkin", 
            "givenName": "Wladimir", 
            "id": "sg:person.0715765242.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715765242.98"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01449495", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031154491", 
              "https://doi.org/10.1007/bf01449495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0305004100021101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053976688"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-03", 
        "datePublishedReg": "2003-03-01", 
        "description": "Let \u0393 be a discrete subgroup of SL(2, ) with a fundamental region of finite hyperbolic volume. (Then, \u0393 is a finitely generated Fuchsian group of the first kind.) Letbe a nontrivial cusp form, with multiplier system, with respect to \u0393. Responding to a question of Geoffrey Mason, the authors present simple proofs of the following two results, under natural restrictions upon \u0393. Theorem.If the coefficients a(n) are real for all n, then the sequence {a(n)} has infinitely many changes of sign. Theorem.Either the sequence {Re a(n)} has infinitely many sign changes or Re a(n) = 0 for all n. The same holds for the sequence {Im a(n)}.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1026207515396", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136382", 
            "issn": [
              "1382-4090", 
              "1572-9303"
            ], 
            "name": "The Ramanujan Journal", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "On the Signs of Fourier Coefficients of Cusp Forms", 
        "pagination": "269-277", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "009155c4615737d9270bf9b5ee687046cea971f8a4759c585f4f1063ffdd40e1"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1026207515396"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1000119339"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1026207515396", 
          "https://app.dimensions.ai/details/publication/pub.1000119339"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000502.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023%2FA%3A1026207515396"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1026207515396'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1026207515396'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1026207515396'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1026207515396'


     

    This table displays all metadata directly associated to this object as RDF triples.

    88 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1026207515396 schema:about anzsrc-for:04
    2 anzsrc-for:0403
    3 schema:author N018edb2facb846388c410e2be96eb813
    4 schema:citation sg:pub.10.1007/bf01449495
    5 https://doi.org/10.1017/s0305004100021101
    6 schema:datePublished 2003-03
    7 schema:datePublishedReg 2003-03-01
    8 schema:description Let Γ be a discrete subgroup of SL(2, ) with a fundamental region of finite hyperbolic volume. (Then, Γ is a finitely generated Fuchsian group of the first kind.) Letbe a nontrivial cusp form, with multiplier system, with respect to Γ. Responding to a question of Geoffrey Mason, the authors present simple proofs of the following two results, under natural restrictions upon Γ. Theorem.If the coefficients a(n) are real for all n, then the sequence {a(n)} has infinitely many changes of sign. Theorem.Either the sequence {Re a(n)} has infinitely many sign changes or Re a(n) = 0 for all n. The same holds for the sequence {Im a(n)}.
    9 schema:genre research_article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N10bcaf9a7b11443aad8b8119f5bd3b06
    13 N36dceed45c844eed9c7a5d9b7e28bf4c
    14 sg:journal.1136382
    15 schema:name On the Signs of Fourier Coefficients of Cusp Forms
    16 schema:pagination 269-277
    17 schema:productId N4155efcc48ee4343b7fa95e9104136b5
    18 Nc39b02f7017f40d8a7a208ccae610548
    19 Nfae5ade5a8ea4afb8defab2c06858e07
    20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000119339
    21 https://doi.org/10.1023/a:1026207515396
    22 schema:sdDatePublished 2019-04-11T01:05
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher Nf3d81ec55b2d48ca89de810e957de374
    25 schema:url http://link.springer.com/10.1023%2FA%3A1026207515396
    26 sgo:license sg:explorer/license/
    27 sgo:sdDataset articles
    28 rdf:type schema:ScholarlyArticle
    29 N018edb2facb846388c410e2be96eb813 rdf:first sg:person.014401377773.23
    30 rdf:rest N45c88519823748628ccf511737b323ed
    31 N10bcaf9a7b11443aad8b8119f5bd3b06 schema:issueNumber 1-3
    32 rdf:type schema:PublicationIssue
    33 N36dceed45c844eed9c7a5d9b7e28bf4c schema:volumeNumber 7
    34 rdf:type schema:PublicationVolume
    35 N4155efcc48ee4343b7fa95e9104136b5 schema:name readcube_id
    36 schema:value 009155c4615737d9270bf9b5ee687046cea971f8a4759c585f4f1063ffdd40e1
    37 rdf:type schema:PropertyValue
    38 N45c88519823748628ccf511737b323ed rdf:first sg:person.011543774375.00
    39 rdf:rest N77491c8af793426c92f08f75aeaadc19
    40 N77491c8af793426c92f08f75aeaadc19 rdf:first sg:person.0715765242.98
    41 rdf:rest rdf:nil
    42 Nc39b02f7017f40d8a7a208ccae610548 schema:name dimensions_id
    43 schema:value pub.1000119339
    44 rdf:type schema:PropertyValue
    45 Nf3d81ec55b2d48ca89de810e957de374 schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 Nfae5ade5a8ea4afb8defab2c06858e07 schema:name doi
    48 schema:value 10.1023/a:1026207515396
    49 rdf:type schema:PropertyValue
    50 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    51 schema:name Earth Sciences
    52 rdf:type schema:DefinedTerm
    53 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Geology
    55 rdf:type schema:DefinedTerm
    56 sg:journal.1136382 schema:issn 1382-4090
    57 1572-9303
    58 schema:name The Ramanujan Journal
    59 rdf:type schema:Periodical
    60 sg:person.011543774375.00 schema:affiliation https://www.grid.ac/institutes/grid.7700.0
    61 schema:familyName Kohnen
    62 schema:givenName Winfried
    63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011543774375.00
    64 rdf:type schema:Person
    65 sg:person.014401377773.23 schema:affiliation https://www.grid.ac/institutes/grid.264727.2
    66 schema:familyName Knopp
    67 schema:givenName Marvin
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014401377773.23
    69 rdf:type schema:Person
    70 sg:person.0715765242.98 schema:affiliation https://www.grid.ac/institutes/grid.256868.7
    71 schema:familyName Pribitkin
    72 schema:givenName Wladimir
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715765242.98
    74 rdf:type schema:Person
    75 sg:pub.10.1007/bf01449495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031154491
    76 https://doi.org/10.1007/bf01449495
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1017/s0305004100021101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053976688
    79 rdf:type schema:CreativeWork
    80 https://www.grid.ac/institutes/grid.256868.7 schema:alternateName Haverford College
    81 schema:name Department of Mathematics, Haverford College, 370 Lancaster Ave., 19041, Haverford, Pennsylvania
    82 rdf:type schema:Organization
    83 https://www.grid.ac/institutes/grid.264727.2 schema:alternateName Temple University
    84 schema:name Department of Mathematics, Temple University, Broad St. and Montgomery Ave., 19122, Philadelphia, Pennsylvania
    85 rdf:type schema:Organization
    86 https://www.grid.ac/institutes/grid.7700.0 schema:alternateName Heidelberg University
    87 schema:name Mathematisches Institut, INF 288, Universität at Heidelberg, D-69120, Heidelberg, Germany
    88 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...