A Family of Correlation Coefficients Based on the Extended Gini Index View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-08

AUTHORS

E. Schechtman, S. Yitzhaki

ABSTRACT

The extended Gini is a family of measures of variability which is mainly used in the areas of finance and income distribution. Each index in the family is defined by specifying one parameter, which reflects the social evaluation of the marginal utility of income. The higher the parameter, the more weight is attached to the lower portion of the cumulative distribution, reflecting higher concern for poverty. In this paper we list and investigate the properties of the equivalents of the correlation coefficient that are associated with the extended Gini family. In addition, we show that the extended Gini of a linear combination of random variables can be decomposed, in a way which is equivalent to the decomposition of the variance, with, in addition, terms that reflect additional properties of the random variables. The implication of these properties is that any decomposition that is performed with the coefficient of variation can be replicated by an infinite number of indices that are based on the Extended Gini coefficient. More... »

PAGES

129-146

References to SciGraph publications

  • 2002-10. A characterization of income distributions in terms of generalized Gini coefficients in SOCIAL CHOICE AND WELFARE
  • 2002-03. Estimating Beta in REVIEW OF QUANTITATIVE FINANCE AND ACCOUNTING
  • 1999. How do Income Sources Affect Income Inequality? in HANDBOOK OF INCOME INEQUALITY MEASUREMENT
  • 1999-03. The Estimation of Systematic Risk under Differentiated Risk Aversion: A Mean-Extended Gini Approach in REVIEW OF QUANTITATIVE FINANCE AND ACCOUNTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1026152130903

    DOI

    http://dx.doi.org/10.1023/a:1026152130903

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013004715


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Economics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Economics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ben-Gurion University of the Negev", 
              "id": "https://www.grid.ac/institutes/grid.7489.2", 
              "name": [
                "Department of Industrial Engineering and Management, Ben Gurion University of the Negev, Beer Sheva, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schechtman", 
            "givenName": "E.", 
            "id": "sg:person.0747636116.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747636116.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hebrew University of Jerusalem", 
              "id": "https://www.grid.ac/institutes/grid.9619.7", 
              "name": [
                "Department of Economics, The Hebrew University of Jerusalem, Jerusalem, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yitzhaki", 
            "givenName": "S.", 
            "id": "sg:person.011534511667.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534511667.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0022-0531(70)90039-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001084557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1467-6419.00172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004249633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003550200154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017489265", 
              "https://doi.org/10.1007/s003550200154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008348104882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020170706", 
              "https://doi.org/10.1023/a:1008348104882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1014594617251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028535254", 
              "https://doi.org/10.1023/a:1014594617251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0531(83)90053-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028954048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/003465397750160158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029908591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-4413-1_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031948743", 
              "https://doi.org/10.1007/978-94-011-4413-1_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-4413-1_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031948743", 
              "https://doi.org/10.1007/978-94-011-4413-1_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0531(80)90065-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037014175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0165-1765(99)00033-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037236000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0531(88)90010-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042739720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1958.10501481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058299447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03610928708829359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058333821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/003355398555694", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063349097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoms/1177730150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064401973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aos/1176345528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064407824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1880532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069623260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1911158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069639410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2554117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069990171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2648789", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070042837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1049-2585(04)12007-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084808156"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-08", 
        "datePublishedReg": "2003-08-01", 
        "description": "The extended Gini is a family of measures of variability which is mainly used in the areas of finance and income distribution. Each index in the family is defined by specifying one parameter, which reflects the social evaluation of the marginal utility of income. The higher the parameter, the more weight is attached to the lower portion of the cumulative distribution, reflecting higher concern for poverty. In this paper we list and investigate the properties of the equivalents of the correlation coefficient that are associated with the extended Gini family. In addition, we show that the extended Gini of a linear combination of random variables can be decomposed, in a way which is equivalent to the decomposition of the variance, with, in addition, terms that reflect additional properties of the random variables. The implication of these properties is that any decomposition that is performed with the coefficient of variation can be replicated by an infinite number of indices that are based on the Extended Gini coefficient.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1026152130903", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1050672", 
            "issn": [
              "1569-1721", 
              "1573-8701"
            ], 
            "name": "The Journal of Economic Inequality", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "1"
          }
        ], 
        "name": "A Family of Correlation Coefficients Based on the Extended Gini Index", 
        "pagination": "129-146", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3df4265ed6bce71d36d24d9e747b967817647771340c108152de3c06f67b1302"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1026152130903"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013004715"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1026152130903", 
          "https://app.dimensions.ai/details/publication/pub.1013004715"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000504.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023%2FA%3A1026152130903"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1026152130903'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1026152130903'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1026152130903'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1026152130903'


     

    This table displays all metadata directly associated to this object as RDF triples.

    138 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1026152130903 schema:about anzsrc-for:14
    2 anzsrc-for:1402
    3 schema:author N45a05542295b40feaa07a04c9b0911f4
    4 schema:citation sg:pub.10.1007/978-94-011-4413-1_13
    5 sg:pub.10.1007/s003550200154
    6 sg:pub.10.1023/a:1008348104882
    7 sg:pub.10.1023/a:1014594617251
    8 https://doi.org/10.1016/0022-0531(70)90039-6
    9 https://doi.org/10.1016/0022-0531(80)90065-4
    10 https://doi.org/10.1016/0022-0531(83)90053-4
    11 https://doi.org/10.1016/0022-0531(88)90010-5
    12 https://doi.org/10.1016/s0165-1765(99)00033-6
    13 https://doi.org/10.1016/s1049-2585(04)12007-3
    14 https://doi.org/10.1080/01621459.1958.10501481
    15 https://doi.org/10.1080/03610928708829359
    16 https://doi.org/10.1111/1467-6419.00172
    17 https://doi.org/10.1162/003355398555694
    18 https://doi.org/10.1162/003465397750160158
    19 https://doi.org/10.1214/aoms/1177730150
    20 https://doi.org/10.1214/aos/1176345528
    21 https://doi.org/10.2307/1880532
    22 https://doi.org/10.2307/1911158
    23 https://doi.org/10.2307/2554117
    24 https://doi.org/10.2307/2648789
    25 schema:datePublished 2003-08
    26 schema:datePublishedReg 2003-08-01
    27 schema:description The extended Gini is a family of measures of variability which is mainly used in the areas of finance and income distribution. Each index in the family is defined by specifying one parameter, which reflects the social evaluation of the marginal utility of income. The higher the parameter, the more weight is attached to the lower portion of the cumulative distribution, reflecting higher concern for poverty. In this paper we list and investigate the properties of the equivalents of the correlation coefficient that are associated with the extended Gini family. In addition, we show that the extended Gini of a linear combination of random variables can be decomposed, in a way which is equivalent to the decomposition of the variance, with, in addition, terms that reflect additional properties of the random variables. The implication of these properties is that any decomposition that is performed with the coefficient of variation can be replicated by an infinite number of indices that are based on the Extended Gini coefficient.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf N02cd44a0e8b745579173bfa0f58bad0c
    32 Na9d90e55d8b44f27859e4e6df5d51fbf
    33 sg:journal.1050672
    34 schema:name A Family of Correlation Coefficients Based on the Extended Gini Index
    35 schema:pagination 129-146
    36 schema:productId N43c160ce3a0e4b8aa7ea6872edc6b8da
    37 N8533644edfcf43739568a7d7624bcaa0
    38 Nd10d88f9c694415d9ce8cf0646171d74
    39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013004715
    40 https://doi.org/10.1023/a:1026152130903
    41 schema:sdDatePublished 2019-04-10T13:13
    42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    43 schema:sdPublisher N6d390ca0cbd342f5b2f92f0a9e9b0d41
    44 schema:url http://link.springer.com/10.1023%2FA%3A1026152130903
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset articles
    47 rdf:type schema:ScholarlyArticle
    48 N02cd44a0e8b745579173bfa0f58bad0c schema:volumeNumber 1
    49 rdf:type schema:PublicationVolume
    50 N43c160ce3a0e4b8aa7ea6872edc6b8da schema:name dimensions_id
    51 schema:value pub.1013004715
    52 rdf:type schema:PropertyValue
    53 N45a05542295b40feaa07a04c9b0911f4 rdf:first sg:person.0747636116.14
    54 rdf:rest Ne20fdd0110844d95b01fda4416189846
    55 N6d390ca0cbd342f5b2f92f0a9e9b0d41 schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 N8533644edfcf43739568a7d7624bcaa0 schema:name doi
    58 schema:value 10.1023/a:1026152130903
    59 rdf:type schema:PropertyValue
    60 Na9d90e55d8b44f27859e4e6df5d51fbf schema:issueNumber 2
    61 rdf:type schema:PublicationIssue
    62 Nd10d88f9c694415d9ce8cf0646171d74 schema:name readcube_id
    63 schema:value 3df4265ed6bce71d36d24d9e747b967817647771340c108152de3c06f67b1302
    64 rdf:type schema:PropertyValue
    65 Ne20fdd0110844d95b01fda4416189846 rdf:first sg:person.011534511667.11
    66 rdf:rest rdf:nil
    67 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Economics
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Applied Economics
    72 rdf:type schema:DefinedTerm
    73 sg:journal.1050672 schema:issn 1569-1721
    74 1573-8701
    75 schema:name The Journal of Economic Inequality
    76 rdf:type schema:Periodical
    77 sg:person.011534511667.11 schema:affiliation https://www.grid.ac/institutes/grid.9619.7
    78 schema:familyName Yitzhaki
    79 schema:givenName S.
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534511667.11
    81 rdf:type schema:Person
    82 sg:person.0747636116.14 schema:affiliation https://www.grid.ac/institutes/grid.7489.2
    83 schema:familyName Schechtman
    84 schema:givenName E.
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747636116.14
    86 rdf:type schema:Person
    87 sg:pub.10.1007/978-94-011-4413-1_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031948743
    88 https://doi.org/10.1007/978-94-011-4413-1_13
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/s003550200154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017489265
    91 https://doi.org/10.1007/s003550200154
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1023/a:1008348104882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020170706
    94 https://doi.org/10.1023/a:1008348104882
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1023/a:1014594617251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028535254
    97 https://doi.org/10.1023/a:1014594617251
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/0022-0531(70)90039-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001084557
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/0022-0531(80)90065-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037014175
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/0022-0531(83)90053-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028954048
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/0022-0531(88)90010-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042739720
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/s0165-1765(99)00033-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037236000
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/s1049-2585(04)12007-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084808156
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1080/01621459.1958.10501481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299447
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1080/03610928708829359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058333821
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1111/1467-6419.00172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004249633
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1162/003355398555694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063349097
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1162/003465397750160158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029908591
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1214/aoms/1177730150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401973
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1214/aos/1176345528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064407824
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.2307/1880532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069623260
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.2307/1911158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069639410
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.2307/2554117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069990171
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.2307/2648789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070042837
    132 rdf:type schema:CreativeWork
    133 https://www.grid.ac/institutes/grid.7489.2 schema:alternateName Ben-Gurion University of the Negev
    134 schema:name Department of Industrial Engineering and Management, Ben Gurion University of the Negev, Beer Sheva, Israel
    135 rdf:type schema:Organization
    136 https://www.grid.ac/institutes/grid.9619.7 schema:alternateName Hebrew University of Jerusalem
    137 schema:name Department of Economics, The Hebrew University of Jerusalem, Jerusalem, Israel
    138 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...