Cooperative Metaheuristics for Exploring Proteomic Data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-10

AUTHORS

Robin Gras, David Hernandez, Patricia Hernandez, Nadine Zangge, Yoann Mescam, Julien Frey, Olivier Martin, Jacques Nicolas, Ron D. Appel

ABSTRACT

Most combinatorial optimization problems cannotbe solved exactly. A class of methods, calledmetaheuristics, has proved its efficiency togive good approximated solutions in areasonable time. Cooperative metaheuristics area sub-set of metaheuristics, which implies aparallel exploration of the search space byseveral entities with information exchangebetween them. The importance of informationexchange in the optimization process is relatedto the building block hypothesis ofevolutionary algorithms, which is based onthese two questions: what is the pertinentinformation of a given potential solution andhow this information can be shared? Aclassification of cooperative metaheuristicsmethods depending on the nature of cooperationinvolved is presented and the specificproperties of each class, as well as a way tocombine them, is discussed. Severalimprovements in the field of metaheuristics arealso given. In particular, a method to regulatethe use of classical genetic operators and todefine new more pertinent ones is proposed,taking advantage of a building block structuredrepresentation of the explored space. Ahierarchical approach resting on multiplelevels of cooperative metaheuristics is finallypresented, leading to the definition of acomplete concerted cooperation strategy. Someapplications of these concepts to difficultproteomics problems, including automaticprotein identification, biological motifinference and multiple sequence alignment arepresented. For each application, an innovativemethod based on the cooperation concept isgiven and compared with classical approaches.In the protein identification problem, a firstlevel of cooperation using swarm intelligenceis applied to the comparison of massspectrometric data with biological sequencedatabase, followed by a genetic programmingmethod to discover an optimal scoring function.The multiple sequence alignment problem isdecomposed in three steps involving severalevolutionary processes to infer different kindof biological motifs and a concertedcooperation strategy to build the sequencealignment according to their motif content. More... »

PAGES

95-120

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1026080413328

DOI

http://dx.doi.org/10.1023/a:1026080413328

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046406950


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Swiss Institute of Bioinformatics, CMU, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gras", 
        "givenName": "Robin", 
        "id": "sg:person.0712313416.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712313416.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Swiss Institute of Bioinformatics, CMU, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hernandez", 
        "givenName": "David", 
        "id": "sg:person.01170403226.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170403226.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Swiss Institute of Bioinformatics, CMU, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hernandez", 
        "givenName": "Patricia", 
        "id": "sg:person.01270417677.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270417677.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Swiss Institute of Bioinformatics, CMU, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zangge", 
        "givenName": "Nadine", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Recherche en Informatique et Syst\u00e8mes Al\u00e9atoires", 
          "id": "https://www.grid.ac/institutes/grid.420225.3", 
          "name": [
            "Swiss Institute of Bioinformatics, CMU, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland", 
            "IRISA-INRIA, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mescam", 
        "givenName": "Yoann", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Swiss Institute of Bioinformatics, CMU, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frey", 
        "givenName": "Julien", 
        "id": "sg:person.07725007532.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07725007532.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Swiss Institute of Bioinformatics, CMU, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martin", 
        "givenName": "Olivier", 
        "id": "sg:person.010522370132.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010522370132.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Recherche en Informatique et Syst\u00e8mes Al\u00e9atoires", 
          "id": "https://www.grid.ac/institutes/grid.420225.3", 
          "name": [
            "IRISA-INRIA, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicolas", 
        "givenName": "Jacques", 
        "id": "sg:person.01143715001.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143715001.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Swiss Institute of Bioinformatics, CMU, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland", 
            "University of Geneva, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Appel", 
        "givenName": "Ron D.", 
        "id": "sg:person.0731173720.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731173720.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/332306.332311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008278727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0014-5793(02)03189-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009236976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560040817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013908582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2683(19991201)20:18<3535::aid-elps3535>3.0.co;2-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016164550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2683(19991201)20:18<3535::aid-elps3535>3.0.co;2-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016164550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1017087872", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04131-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017087872", 
          "https://doi.org/10.1007/978-3-662-04131-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04131-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017087872", 
          "https://doi.org/10.1007/978-3-662-04131-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/369133.369172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018080948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/369133.369172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018080948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/24.8.1515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019790305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/3.3.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020805940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.4042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022575813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02603120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022962956", 
          "https://doi.org/10.1007/bf02603120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02603120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022962956", 
          "https://doi.org/10.1007/bf02603120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0231(19970615)11:9<1067::aid-rcm953>3.0.co;2-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025283641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1996.0679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026100405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.4.341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027534997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/15.7.563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030639875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/15.2.65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031124287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1520-684x(200103)32:3<33::aid-scj4>3.0.co;2-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032985339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.154101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034259983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1119(98)00097-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037319306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/15.3.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041319529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)00239-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041452094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/332306.332553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042094535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/22.22.4673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042438223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-46239-2_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044272109", 
          "https://doi.org/10.1007/978-3-540-46239-2_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-46239-2_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044272109", 
          "https://doi.org/10.1007/978-3-540-46239-2_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1615-9861(200205)2:5<524::aid-prot524>3.0.co;2-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045487849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.10.1374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048043849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00096a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054971699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/10665270152530872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/106652799318300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059205062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/5.2.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059413859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8211139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062653653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074985095", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082424111", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/spdp.1994.346184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094053768"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-10", 
    "datePublishedReg": "2003-10-01", 
    "description": "Most combinatorial optimization problems cannotbe solved exactly. A class of methods, calledmetaheuristics, has proved its efficiency togive good approximated solutions in areasonable time. Cooperative metaheuristics area sub-set of metaheuristics, which implies aparallel exploration of the search space byseveral entities with information exchangebetween them. The importance of informationexchange in the optimization process is relatedto the building block hypothesis ofevolutionary algorithms, which is based onthese two questions: what is the pertinentinformation of a given potential solution andhow this information can be shared? Aclassification of cooperative metaheuristicsmethods depending on the nature of cooperationinvolved is presented and the specificproperties of each class, as well as a way tocombine them, is discussed. Severalimprovements in the field of metaheuristics arealso given. In particular, a method to regulatethe use of classical genetic operators and todefine new more pertinent ones is proposed,taking advantage of a building block structuredrepresentation of the explored space. Ahierarchical approach resting on multiplelevels of cooperative metaheuristics is finallypresented, leading to the definition of acomplete concerted cooperation strategy. Someapplications of these concepts to difficultproteomics problems, including automaticprotein identification, biological motifinference and multiple sequence alignment arepresented. For each application, an innovativemethod based on the cooperation concept isgiven and compared with classical approaches.In the protein identification problem, a firstlevel of cooperation using swarm intelligenceis applied to the comparison of massspectrometric data with biological sequencedatabase, followed by a genetic programmingmethod to discover an optimal scoring function.The multiple sequence alignment problem isdecomposed in three steps involving severalevolutionary processes to infer different kindof biological motifs and a concertedcooperation strategy to build the sequencealignment according to their motif content.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1026080413328", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1126843", 
        "issn": [
          "0269-2821", 
          "1573-7462"
        ], 
        "name": "Artificial Intelligence Review", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Cooperative Metaheuristics for Exploring Proteomic Data", 
    "pagination": "95-120", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dd0fe36aed682ab5034828ed3a4d0f1046754051f7b2bef3d9a08bc35254c420"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1026080413328"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046406950"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1026080413328", 
      "https://app.dimensions.ai/details/publication/pub.1046406950"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1026080413328"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1026080413328'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1026080413328'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1026080413328'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1026080413328'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1026080413328 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd111b021671c4a1baea57a25c25a2fe1
4 schema:citation sg:pub.10.1007/978-3-540-46239-2_21
5 sg:pub.10.1007/978-3-662-04131-4
6 sg:pub.10.1007/bf02603120
7 https://app.dimensions.ai/details/publication/pub.1017087872
8 https://app.dimensions.ai/details/publication/pub.1074985095
9 https://app.dimensions.ai/details/publication/pub.1082424111
10 https://doi.org/10.1002/(sici)1097-0231(19970615)11:9<1067::aid-rcm953>3.0.co;2-l
11 https://doi.org/10.1002/(sici)1522-2683(19991201)20:18<3535::aid-elps3535>3.0.co;2-j
12 https://doi.org/10.1002/1520-684x(200103)32:3<33::aid-scj4>3.0.co;2-p
13 https://doi.org/10.1002/1615-9861(200205)2:5<524::aid-prot524>3.0.co;2-o
14 https://doi.org/10.1002/pro.5560040817
15 https://doi.org/10.1006/jmbi.1996.0679
16 https://doi.org/10.1006/jmbi.2000.4042
17 https://doi.org/10.1016/s0014-5793(02)03189-7
18 https://doi.org/10.1016/s0022-2836(02)00239-5
19 https://doi.org/10.1016/s0378-1119(98)00097-3
20 https://doi.org/10.1021/ac00096a002
21 https://doi.org/10.1089/10665270152530872
22 https://doi.org/10.1089/106652799318300
23 https://doi.org/10.1093/bib/3.3.303
24 https://doi.org/10.1093/bioinformatics/15.3.211
25 https://doi.org/10.1093/bioinformatics/15.7.563
26 https://doi.org/10.1093/bioinformatics/16.4.341
27 https://doi.org/10.1093/bioinformatics/18.10.1374
28 https://doi.org/10.1093/bioinformatics/5.2.151
29 https://doi.org/10.1093/nar/22.22.4673
30 https://doi.org/10.1093/nar/24.8.1515
31 https://doi.org/10.1093/protein/15.2.65
32 https://doi.org/10.1101/gr.154101
33 https://doi.org/10.1109/spdp.1994.346184
34 https://doi.org/10.1126/science.8211139
35 https://doi.org/10.1145/332306.332311
36 https://doi.org/10.1145/332306.332553
37 https://doi.org/10.1145/369133.369172
38 schema:datePublished 2003-10
39 schema:datePublishedReg 2003-10-01
40 schema:description Most combinatorial optimization problems cannotbe solved exactly. A class of methods, calledmetaheuristics, has proved its efficiency togive good approximated solutions in areasonable time. Cooperative metaheuristics area sub-set of metaheuristics, which implies aparallel exploration of the search space byseveral entities with information exchangebetween them. The importance of informationexchange in the optimization process is relatedto the building block hypothesis ofevolutionary algorithms, which is based onthese two questions: what is the pertinentinformation of a given potential solution andhow this information can be shared? Aclassification of cooperative metaheuristicsmethods depending on the nature of cooperationinvolved is presented and the specificproperties of each class, as well as a way tocombine them, is discussed. Severalimprovements in the field of metaheuristics arealso given. In particular, a method to regulatethe use of classical genetic operators and todefine new more pertinent ones is proposed,taking advantage of a building block structuredrepresentation of the explored space. Ahierarchical approach resting on multiplelevels of cooperative metaheuristics is finallypresented, leading to the definition of acomplete concerted cooperation strategy. Someapplications of these concepts to difficultproteomics problems, including automaticprotein identification, biological motifinference and multiple sequence alignment arepresented. For each application, an innovativemethod based on the cooperation concept isgiven and compared with classical approaches.In the protein identification problem, a firstlevel of cooperation using swarm intelligenceis applied to the comparison of massspectrometric data with biological sequencedatabase, followed by a genetic programmingmethod to discover an optimal scoring function.The multiple sequence alignment problem isdecomposed in three steps involving severalevolutionary processes to infer different kindof biological motifs and a concertedcooperation strategy to build the sequencealignment according to their motif content.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N5c30885cc6b843529e833b83f121ec7b
45 N5cff8f4377df463c846cff06023c5a8c
46 sg:journal.1126843
47 schema:name Cooperative Metaheuristics for Exploring Proteomic Data
48 schema:pagination 95-120
49 schema:productId N46e624c5b99f4f0d8971ec55eca2c7e7
50 N8c4ef0e46e1f4bb5b517479fda820c1d
51 Ncb1740b7504f4efdbf46097d27b8c2a0
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046406950
53 https://doi.org/10.1023/a:1026080413328
54 schema:sdDatePublished 2019-04-10T16:41
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nc4e1d554eb244ce0949774976d821c0a
57 schema:url http://link.springer.com/10.1023%2FA%3A1026080413328
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N1ce25e58a7e74e1cb945bcb83cea85a9 schema:affiliation https://www.grid.ac/institutes/grid.8591.5
62 schema:familyName Zangge
63 schema:givenName Nadine
64 rdf:type schema:Person
65 N3fd0363a44854c44a5b7c6af8de06105 rdf:first sg:person.010522370132.21
66 rdf:rest Na23195791b4147e5b92cc3f8c98d3f26
67 N46e624c5b99f4f0d8971ec55eca2c7e7 schema:name doi
68 schema:value 10.1023/a:1026080413328
69 rdf:type schema:PropertyValue
70 N5c30885cc6b843529e833b83f121ec7b schema:volumeNumber 20
71 rdf:type schema:PublicationVolume
72 N5cff8f4377df463c846cff06023c5a8c schema:issueNumber 1-2
73 rdf:type schema:PublicationIssue
74 N76f712a11ed74b3eae13fdc477f5c165 rdf:first sg:person.07725007532.39
75 rdf:rest N3fd0363a44854c44a5b7c6af8de06105
76 N8c4ef0e46e1f4bb5b517479fda820c1d schema:name dimensions_id
77 schema:value pub.1046406950
78 rdf:type schema:PropertyValue
79 N955ca2691a5f4ee0b0d4b680030c249f rdf:first sg:person.01270417677.70
80 rdf:rest Ncc023c5b56694579b0e43a7dadf7c285
81 Na23195791b4147e5b92cc3f8c98d3f26 rdf:first sg:person.01143715001.20
82 rdf:rest Nf34cac3b01b04509883618bd2358474a
83 Nc4e1d554eb244ce0949774976d821c0a schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Ncb1740b7504f4efdbf46097d27b8c2a0 schema:name readcube_id
86 schema:value dd0fe36aed682ab5034828ed3a4d0f1046754051f7b2bef3d9a08bc35254c420
87 rdf:type schema:PropertyValue
88 Ncc023c5b56694579b0e43a7dadf7c285 rdf:first N1ce25e58a7e74e1cb945bcb83cea85a9
89 rdf:rest Nf7871d61507843a2964f5eb130adbd60
90 Nd102a6f6d1344b1199d22a3058a85958 rdf:first sg:person.01170403226.12
91 rdf:rest N955ca2691a5f4ee0b0d4b680030c249f
92 Nd111b021671c4a1baea57a25c25a2fe1 rdf:first sg:person.0712313416.43
93 rdf:rest Nd102a6f6d1344b1199d22a3058a85958
94 Ne4b6be14bc1743ffab5ceadb27243fe8 schema:affiliation https://www.grid.ac/institutes/grid.420225.3
95 schema:familyName Mescam
96 schema:givenName Yoann
97 rdf:type schema:Person
98 Nf34cac3b01b04509883618bd2358474a rdf:first sg:person.0731173720.50
99 rdf:rest rdf:nil
100 Nf7871d61507843a2964f5eb130adbd60 rdf:first Ne4b6be14bc1743ffab5ceadb27243fe8
101 rdf:rest N76f712a11ed74b3eae13fdc477f5c165
102 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
103 schema:name Information and Computing Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
106 schema:name Artificial Intelligence and Image Processing
107 rdf:type schema:DefinedTerm
108 sg:journal.1126843 schema:issn 0269-2821
109 1573-7462
110 schema:name Artificial Intelligence Review
111 rdf:type schema:Periodical
112 sg:person.010522370132.21 schema:affiliation https://www.grid.ac/institutes/grid.8591.5
113 schema:familyName Martin
114 schema:givenName Olivier
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010522370132.21
116 rdf:type schema:Person
117 sg:person.01143715001.20 schema:affiliation https://www.grid.ac/institutes/grid.420225.3
118 schema:familyName Nicolas
119 schema:givenName Jacques
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143715001.20
121 rdf:type schema:Person
122 sg:person.01170403226.12 schema:affiliation https://www.grid.ac/institutes/grid.8591.5
123 schema:familyName Hernandez
124 schema:givenName David
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170403226.12
126 rdf:type schema:Person
127 sg:person.01270417677.70 schema:affiliation https://www.grid.ac/institutes/grid.8591.5
128 schema:familyName Hernandez
129 schema:givenName Patricia
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270417677.70
131 rdf:type schema:Person
132 sg:person.0712313416.43 schema:affiliation https://www.grid.ac/institutes/grid.8591.5
133 schema:familyName Gras
134 schema:givenName Robin
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712313416.43
136 rdf:type schema:Person
137 sg:person.0731173720.50 schema:affiliation https://www.grid.ac/institutes/grid.8591.5
138 schema:familyName Appel
139 schema:givenName Ron D.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731173720.50
141 rdf:type schema:Person
142 sg:person.07725007532.39 schema:affiliation https://www.grid.ac/institutes/grid.8591.5
143 schema:familyName Frey
144 schema:givenName Julien
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07725007532.39
146 rdf:type schema:Person
147 sg:pub.10.1007/978-3-540-46239-2_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044272109
148 https://doi.org/10.1007/978-3-540-46239-2_21
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/978-3-662-04131-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017087872
151 https://doi.org/10.1007/978-3-662-04131-4
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/bf02603120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022962956
154 https://doi.org/10.1007/bf02603120
155 rdf:type schema:CreativeWork
156 https://app.dimensions.ai/details/publication/pub.1017087872 schema:CreativeWork
157 https://app.dimensions.ai/details/publication/pub.1074985095 schema:CreativeWork
158 https://app.dimensions.ai/details/publication/pub.1082424111 schema:CreativeWork
159 https://doi.org/10.1002/(sici)1097-0231(19970615)11:9<1067::aid-rcm953>3.0.co;2-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1025283641
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/(sici)1522-2683(19991201)20:18<3535::aid-elps3535>3.0.co;2-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1016164550
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/1520-684x(200103)32:3<33::aid-scj4>3.0.co;2-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1032985339
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/1615-9861(200205)2:5<524::aid-prot524>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1045487849
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/pro.5560040817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013908582
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1006/jmbi.1996.0679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026100405
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1006/jmbi.2000.4042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022575813
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0014-5793(02)03189-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009236976
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0022-2836(02)00239-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041452094
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0378-1119(98)00097-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037319306
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1021/ac00096a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054971699
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1089/10665270152530872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204893
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1089/106652799318300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059205062
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/bib/3.3.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020805940
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/bioinformatics/15.3.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041319529
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/bioinformatics/15.7.563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030639875
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/bioinformatics/16.4.341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027534997
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/bioinformatics/18.10.1374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048043849
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/bioinformatics/5.2.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413859
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/nar/22.22.4673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042438223
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/nar/24.8.1515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019790305
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/protein/15.2.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031124287
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1101/gr.154101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034259983
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/spdp.1994.346184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094053768
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1126/science.8211139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062653653
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1145/332306.332311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008278727
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1145/332306.332553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042094535
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1145/369133.369172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018080948
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.420225.3 schema:alternateName Institut de Recherche en Informatique et Systèmes Aléatoires
216 schema:name IRISA-INRIA, Rennes, France
217 Swiss Institute of Bioinformatics, CMU, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.8591.5 schema:alternateName University of Geneva
220 schema:name Swiss Institute of Bioinformatics, CMU, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
221 University of Geneva, Geneva, Switzerland
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...