A 32-Channel High-Speed Simultaneously Sampling Data Acquisition System View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-09

AUTHORS

V. F. Gurko, P. V. Zubarev, A. N. Kvashnin, D. V. Moiseev, A. D. Khil'chenko, V. A. Khil'chenko

ABSTRACT

The system is intended for recording data in the multichannel diagnostic sections of experimental plasma facilities. It contains eight four-channel modules that record the shapes of single pulse signals, a controller module of the system bus of the crate, a fiber-optic communication line, and an interface card for connection to the ISA bus of a personal computer. The recording modules are based on 12-bit analog-to-digital converters (ADCs) with a sampling frequency of up to 50 MHz, ensuring a conversion accuracy equal to the least significant bit in a band of the input signal of up to 20 MHz. The ADC samples are fixed in 32-Kword/channel buffer storage units with a page organization. The current values of the amplitude of the input signals in all of the recording channels are measured simultaneously with a time jitter of no more than 0.2 ns. The software selects an amplitude conversion scale and a zero offset voltage value for each recording channel, as well as the current value of the sampling frequency for all the channels. More... »

PAGES

608-612

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1026069116962

DOI

http://dx.doi.org/10.1023/a:1026069116962

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027083299


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Siberian Division, Russian Academy of Sciences, Budker Institute of Nuclear Physics, pr. Akad. Lavrent'eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gurko", 
        "givenName": "V. F.", 
        "id": "sg:person.013517332615.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517332615.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Siberian Division, Russian Academy of Sciences, Budker Institute of Nuclear Physics, pr. Akad. Lavrent'eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zubarev", 
        "givenName": "P. V.", 
        "id": "sg:person.015471724465.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015471724465.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Siberian Division, Russian Academy of Sciences, Budker Institute of Nuclear Physics, pr. Akad. Lavrent'eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kvashnin", 
        "givenName": "A. N.", 
        "id": "sg:person.012401565413.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012401565413.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Siberian Division, Russian Academy of Sciences, Budker Institute of Nuclear Physics, pr. Akad. Lavrent'eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moiseev", 
        "givenName": "D. V.", 
        "id": "sg:person.012762211651.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012762211651.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Siberian Division, Russian Academy of Sciences, Budker Institute of Nuclear Physics, pr. Akad. Lavrent'eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khil'chenko", 
        "givenName": "A. D.", 
        "id": "sg:person.011547706651.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011547706651.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Siberian Division, Russian Academy of Sciences, Budker Institute of Nuclear Physics, pr. Akad. Lavrent'eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khil'chenko", 
        "givenName": "V. A.", 
        "id": "sg:person.014535610651.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014535610651.48"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-09", 
    "datePublishedReg": "2003-09-01", 
    "description": "The system is intended for recording data in the multichannel diagnostic sections of experimental plasma facilities. It contains eight four-channel modules that record the shapes of single pulse signals, a controller module of the system bus of the crate, a fiber-optic communication line, and an interface card for connection to the ISA bus of a personal computer. The recording modules are based on 12-bit analog-to-digital converters (ADCs) with a sampling frequency of up to 50 MHz, ensuring a conversion accuracy equal to the least significant bit in a band of the input signal of up to 20 MHz. The ADC samples are fixed in 32-Kword/channel buffer storage units with a page organization. The current values of the amplitude of the input signals in all of the recording channels are measured simultaneously with a time jitter of no more than 0.2 ns. The software selects an amplitude conversion scale and a zero offset voltage value for each recording channel, as well as the current value of the sampling frequency for all the channels.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1026069116962", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135921", 
        "issn": [
          "0020-4412", 
          "1608-3180"
        ], 
        "name": "Instruments and Experimental Techniques", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "A 32-Channel High-Speed Simultaneously Sampling Data Acquisition System", 
    "pagination": "608-612", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "81042ae9154f78901e586406a71e87c914e789c71b41bb44c421a1fe126e529e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1026069116962"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027083299"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1026069116962", 
      "https://app.dimensions.ai/details/publication/pub.1027083299"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1026069116962"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1026069116962'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1026069116962'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1026069116962'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1026069116962'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1026069116962 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na67bc186e5144c64824f5b9bfc108b7e
4 schema:datePublished 2003-09
5 schema:datePublishedReg 2003-09-01
6 schema:description The system is intended for recording data in the multichannel diagnostic sections of experimental plasma facilities. It contains eight four-channel modules that record the shapes of single pulse signals, a controller module of the system bus of the crate, a fiber-optic communication line, and an interface card for connection to the ISA bus of a personal computer. The recording modules are based on 12-bit analog-to-digital converters (ADCs) with a sampling frequency of up to 50 MHz, ensuring a conversion accuracy equal to the least significant bit in a band of the input signal of up to 20 MHz. The ADC samples are fixed in 32-Kword/channel buffer storage units with a page organization. The current values of the amplitude of the input signals in all of the recording channels are measured simultaneously with a time jitter of no more than 0.2 ns. The software selects an amplitude conversion scale and a zero offset voltage value for each recording channel, as well as the current value of the sampling frequency for all the channels.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N2d204207ddd14505b88c695d04133da1
11 N89ceb71b63e24066916d6d225f8f456b
12 sg:journal.1135921
13 schema:name A 32-Channel High-Speed Simultaneously Sampling Data Acquisition System
14 schema:pagination 608-612
15 schema:productId N0696cc6eab1a42449493ddb36a8f8ca0
16 N333acba3ec59497ea3d2249bfbb760b7
17 N6cf34f5782ba4e7a9a5f8b953657e0ae
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027083299
19 https://doi.org/10.1023/a:1026069116962
20 schema:sdDatePublished 2019-04-10T20:45
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N41c33ad5e8c64cccb5445c484bad8e54
23 schema:url http://link.springer.com/10.1023%2FA%3A1026069116962
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0696cc6eab1a42449493ddb36a8f8ca0 schema:name dimensions_id
28 schema:value pub.1027083299
29 rdf:type schema:PropertyValue
30 N2884f9b9709e483b8b469f1396b98c78 rdf:first sg:person.012401565413.24
31 rdf:rest Nca6cdced558c4ec9832e1ce72872323c
32 N2d204207ddd14505b88c695d04133da1 schema:volumeNumber 46
33 rdf:type schema:PublicationVolume
34 N333acba3ec59497ea3d2249bfbb760b7 schema:name readcube_id
35 schema:value 81042ae9154f78901e586406a71e87c914e789c71b41bb44c421a1fe126e529e
36 rdf:type schema:PropertyValue
37 N36343908915f43328b89019368cc4da7 rdf:first sg:person.014535610651.48
38 rdf:rest rdf:nil
39 N41c33ad5e8c64cccb5445c484bad8e54 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N6cf34f5782ba4e7a9a5f8b953657e0ae schema:name doi
42 schema:value 10.1023/a:1026069116962
43 rdf:type schema:PropertyValue
44 N89ceb71b63e24066916d6d225f8f456b schema:issueNumber 5
45 rdf:type schema:PublicationIssue
46 N8efb4b34350a485eb109ef691dfd7b25 rdf:first sg:person.015471724465.10
47 rdf:rest N2884f9b9709e483b8b469f1396b98c78
48 Na67bc186e5144c64824f5b9bfc108b7e rdf:first sg:person.013517332615.00
49 rdf:rest N8efb4b34350a485eb109ef691dfd7b25
50 Nca6cdced558c4ec9832e1ce72872323c rdf:first sg:person.012762211651.20
51 rdf:rest Ne5324d3f147649e590da69299cdb6950
52 Ne5324d3f147649e590da69299cdb6950 rdf:first sg:person.011547706651.83
53 rdf:rest N36343908915f43328b89019368cc4da7
54 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
55 schema:name Information and Computing Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
58 schema:name Artificial Intelligence and Image Processing
59 rdf:type schema:DefinedTerm
60 sg:journal.1135921 schema:issn 0020-4412
61 1608-3180
62 schema:name Instruments and Experimental Techniques
63 rdf:type schema:Periodical
64 sg:person.011547706651.83 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
65 schema:familyName Khil'chenko
66 schema:givenName A. D.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011547706651.83
68 rdf:type schema:Person
69 sg:person.012401565413.24 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
70 schema:familyName Kvashnin
71 schema:givenName A. N.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012401565413.24
73 rdf:type schema:Person
74 sg:person.012762211651.20 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
75 schema:familyName Moiseev
76 schema:givenName D. V.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012762211651.20
78 rdf:type schema:Person
79 sg:person.013517332615.00 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
80 schema:familyName Gurko
81 schema:givenName V. F.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517332615.00
83 rdf:type schema:Person
84 sg:person.014535610651.48 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
85 schema:familyName Khil'chenko
86 schema:givenName V. A.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014535610651.48
88 rdf:type schema:Person
89 sg:person.015471724465.10 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
90 schema:familyName Zubarev
91 schema:givenName P. V.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015471724465.10
93 rdf:type schema:Person
94 https://www.grid.ac/institutes/grid.418495.5 schema:alternateName Budker Institute of Nuclear Physics
95 schema:name Siberian Division, Russian Academy of Sciences, Budker Institute of Nuclear Physics, pr. Akad. Lavrent'eva 11, 630090, Novosibirsk, Russia
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...