A 32-Channel High-Speed Simultaneously Sampling Data Acquisition System View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-09

AUTHORS

V. F. Gurko, P. V. Zubarev, A. N. Kvashnin, D. V. Moiseev, A. D. Khil'chenko, V. A. Khil'chenko

ABSTRACT

The system is intended for recording data in the multichannel diagnostic sections of experimental plasma facilities. It contains eight four-channel modules that record the shapes of single pulse signals, a controller module of the system bus of the crate, a fiber-optic communication line, and an interface card for connection to the ISA bus of a personal computer. The recording modules are based on 12-bit analog-to-digital converters (ADCs) with a sampling frequency of up to 50 MHz, ensuring a conversion accuracy equal to the least significant bit in a band of the input signal of up to 20 MHz. The ADC samples are fixed in 32-Kword/channel buffer storage units with a page organization. The current values of the amplitude of the input signals in all of the recording channels are measured simultaneously with a time jitter of no more than 0.2 ns. The software selects an amplitude conversion scale and a zero offset voltage value for each recording channel, as well as the current value of the sampling frequency for all the channels. More... »

PAGES

608-612

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1026069116962

DOI

http://dx.doi.org/10.1023/a:1026069116962

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027083299


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Siberian Division, Russian Academy of Sciences, Budker Institute of Nuclear Physics, pr. Akad. Lavrent'eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gurko", 
        "givenName": "V. F.", 
        "id": "sg:person.013517332615.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517332615.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Siberian Division, Russian Academy of Sciences, Budker Institute of Nuclear Physics, pr. Akad. Lavrent'eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zubarev", 
        "givenName": "P. V.", 
        "id": "sg:person.015471724465.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015471724465.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Siberian Division, Russian Academy of Sciences, Budker Institute of Nuclear Physics, pr. Akad. Lavrent'eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kvashnin", 
        "givenName": "A. N.", 
        "id": "sg:person.012401565413.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012401565413.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Siberian Division, Russian Academy of Sciences, Budker Institute of Nuclear Physics, pr. Akad. Lavrent'eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moiseev", 
        "givenName": "D. V.", 
        "id": "sg:person.012762211651.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012762211651.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Siberian Division, Russian Academy of Sciences, Budker Institute of Nuclear Physics, pr. Akad. Lavrent'eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khil'chenko", 
        "givenName": "A. D.", 
        "id": "sg:person.011547706651.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011547706651.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Siberian Division, Russian Academy of Sciences, Budker Institute of Nuclear Physics, pr. Akad. Lavrent'eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khil'chenko", 
        "givenName": "V. A.", 
        "id": "sg:person.014535610651.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014535610651.48"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-09", 
    "datePublishedReg": "2003-09-01", 
    "description": "The system is intended for recording data in the multichannel diagnostic sections of experimental plasma facilities. It contains eight four-channel modules that record the shapes of single pulse signals, a controller module of the system bus of the crate, a fiber-optic communication line, and an interface card for connection to the ISA bus of a personal computer. The recording modules are based on 12-bit analog-to-digital converters (ADCs) with a sampling frequency of up to 50 MHz, ensuring a conversion accuracy equal to the least significant bit in a band of the input signal of up to 20 MHz. The ADC samples are fixed in 32-Kword/channel buffer storage units with a page organization. The current values of the amplitude of the input signals in all of the recording channels are measured simultaneously with a time jitter of no more than 0.2 ns. The software selects an amplitude conversion scale and a zero offset voltage value for each recording channel, as well as the current value of the sampling frequency for all the channels.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1026069116962", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135921", 
        "issn": [
          "0020-4412", 
          "1608-3180"
        ], 
        "name": "Instruments and Experimental Techniques", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "A 32-Channel High-Speed Simultaneously Sampling Data Acquisition System", 
    "pagination": "608-612", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "81042ae9154f78901e586406a71e87c914e789c71b41bb44c421a1fe126e529e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1026069116962"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027083299"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1026069116962", 
      "https://app.dimensions.ai/details/publication/pub.1027083299"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1026069116962"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1026069116962'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1026069116962'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1026069116962'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1026069116962'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1026069116962 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc361ae4349204e92bdc3d8bc8577479a
4 schema:datePublished 2003-09
5 schema:datePublishedReg 2003-09-01
6 schema:description The system is intended for recording data in the multichannel diagnostic sections of experimental plasma facilities. It contains eight four-channel modules that record the shapes of single pulse signals, a controller module of the system bus of the crate, a fiber-optic communication line, and an interface card for connection to the ISA bus of a personal computer. The recording modules are based on 12-bit analog-to-digital converters (ADCs) with a sampling frequency of up to 50 MHz, ensuring a conversion accuracy equal to the least significant bit in a band of the input signal of up to 20 MHz. The ADC samples are fixed in 32-Kword/channel buffer storage units with a page organization. The current values of the amplitude of the input signals in all of the recording channels are measured simultaneously with a time jitter of no more than 0.2 ns. The software selects an amplitude conversion scale and a zero offset voltage value for each recording channel, as well as the current value of the sampling frequency for all the channels.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N07c9a02d51b445f3996a34f8585857aa
11 N849e1547192f4bf28611bd3e63805a18
12 sg:journal.1135921
13 schema:name A 32-Channel High-Speed Simultaneously Sampling Data Acquisition System
14 schema:pagination 608-612
15 schema:productId N1ca952137df64d6f8a87cc723ce2dbf2
16 N40020c60bbba472c8e3ce097be63d150
17 N8c2287bbb2cc4c35bca626edddba9a82
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027083299
19 https://doi.org/10.1023/a:1026069116962
20 schema:sdDatePublished 2019-04-10T20:45
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N4bf28ac367634e51b8bbfc988b2db7fc
23 schema:url http://link.springer.com/10.1023%2FA%3A1026069116962
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N07c9a02d51b445f3996a34f8585857aa schema:volumeNumber 46
28 rdf:type schema:PublicationVolume
29 N1ca952137df64d6f8a87cc723ce2dbf2 schema:name doi
30 schema:value 10.1023/a:1026069116962
31 rdf:type schema:PropertyValue
32 N40020c60bbba472c8e3ce097be63d150 schema:name dimensions_id
33 schema:value pub.1027083299
34 rdf:type schema:PropertyValue
35 N4bf28ac367634e51b8bbfc988b2db7fc schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N4d16a3c5cd424d33adfd31f8e9bf5bc5 rdf:first sg:person.012762211651.20
38 rdf:rest Nd7dc75525ba94a529109b6547a2d963b
39 N5b8cd7fea60a417680902aef81bea490 rdf:first sg:person.014535610651.48
40 rdf:rest rdf:nil
41 N849e1547192f4bf28611bd3e63805a18 schema:issueNumber 5
42 rdf:type schema:PublicationIssue
43 N877bdd5f72c549ca843c36916b72f66a rdf:first sg:person.015471724465.10
44 rdf:rest N9ac5e46475eb4d3f9e7ffd10f1970179
45 N8c2287bbb2cc4c35bca626edddba9a82 schema:name readcube_id
46 schema:value 81042ae9154f78901e586406a71e87c914e789c71b41bb44c421a1fe126e529e
47 rdf:type schema:PropertyValue
48 N9ac5e46475eb4d3f9e7ffd10f1970179 rdf:first sg:person.012401565413.24
49 rdf:rest N4d16a3c5cd424d33adfd31f8e9bf5bc5
50 Nc361ae4349204e92bdc3d8bc8577479a rdf:first sg:person.013517332615.00
51 rdf:rest N877bdd5f72c549ca843c36916b72f66a
52 Nd7dc75525ba94a529109b6547a2d963b rdf:first sg:person.011547706651.83
53 rdf:rest N5b8cd7fea60a417680902aef81bea490
54 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
55 schema:name Information and Computing Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
58 schema:name Artificial Intelligence and Image Processing
59 rdf:type schema:DefinedTerm
60 sg:journal.1135921 schema:issn 0020-4412
61 1608-3180
62 schema:name Instruments and Experimental Techniques
63 rdf:type schema:Periodical
64 sg:person.011547706651.83 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
65 schema:familyName Khil'chenko
66 schema:givenName A. D.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011547706651.83
68 rdf:type schema:Person
69 sg:person.012401565413.24 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
70 schema:familyName Kvashnin
71 schema:givenName A. N.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012401565413.24
73 rdf:type schema:Person
74 sg:person.012762211651.20 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
75 schema:familyName Moiseev
76 schema:givenName D. V.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012762211651.20
78 rdf:type schema:Person
79 sg:person.013517332615.00 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
80 schema:familyName Gurko
81 schema:givenName V. F.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517332615.00
83 rdf:type schema:Person
84 sg:person.014535610651.48 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
85 schema:familyName Khil'chenko
86 schema:givenName V. A.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014535610651.48
88 rdf:type schema:Person
89 sg:person.015471724465.10 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
90 schema:familyName Zubarev
91 schema:givenName P. V.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015471724465.10
93 rdf:type schema:Person
94 https://www.grid.ac/institutes/grid.418495.5 schema:alternateName Budker Institute of Nuclear Physics
95 schema:name Siberian Division, Russian Academy of Sciences, Budker Institute of Nuclear Physics, pr. Akad. Lavrent'eva 11, 630090, Novosibirsk, Russia
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...