Pattern Scaling: An Examination of the Accuracy of the Technique for Describing Future Climates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-10

AUTHORS

Timothy D. Mitchell

ABSTRACT

A fully probabilistic, or risk, assessment of future regional climate changeand its impacts involves more scenarios of radiative forcing than can besimulated by a general (GCM) or regional (RCM) circulation model. Additionalscenarios may be created by scaling a spatial response pattern from a GCM bya global warming projection from a simple climate model. I examine thistechnique, known as pattern scaling, using a particular GCM (HadCM2).Thecritical assumption is that there is a linear relationship between the scaler(annual global-mean temperature) and the response pattern. Previous studieshave found this assumption to be broadly valid for annual temperature; Iextend this conclusion to precipitation and seasonal (JJA) climate. However,slight non-linearities arise from the dependence of the climatic response onthe rate, not just the amount, of change in the scaler. These non-linearitiesintroduce some significant errors into the estimates made by pattern scaling,but nonetheless the estimates accurately represent the modelled changes. Aresponse pattern may be made more robust by lengthening the period from whichit is obtained, by anomalising it relative to the control simulation, and byusing least squares regression to obtain it. The errors arising from patternscaling may be minimised by interpolating from a stronger to a weaker forcingscenario. More... »

PAGES

217-242

References to SciGraph publications

  • 2002-03. Can we Estimate the Likelihood of Climatic Changes at 2100? in CLIMATIC CHANGE
  • 1998-01. A Bayesian Statistical Analysis of the Enhanced Greenhouse Effect in CLIMATIC CHANGE
  • 1999-10. Do-it-yourself climate prediction in NATURE
  • 2001-07. Climate-change strategy needs to be robust in NATURE
  • 2002-04. Origins and estimates of uncertainty in predictions of twenty-first century temperature rise in NATURE
  • 2000-04. The Impacts of Climate Variability on Near-Term Policy Choices and the Value of Information in CLIMATIC CHANGE
  • 2000-07. Representing uncertainty in climate change scenarios: a Monte-Carlo approach in INTEGRATED ASSESSMENT
  • 2000-08. An analogue model to derive additional climate change scenarios from existing GCM simulations in CLIMATE DYNAMICS
  • 2001-07. Identifying dangers in an uncertain climate in NATURE
  • 1997-02. The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation in CLIMATE DYNAMICS
  • 1996-11. Grid point surface air temperature calculations with a fast turnaround: Combining the results of IMAGE and a GCM in CLIMATIC CHANGE
  • 2001-05. What is 'dangerous' climate change? in NATURE
  • 2001-01. Long-term climate changes due to increased CO2 concentration in the coupled atmosphere-ocean general circulation model ECHAM3/LSG in CLIMATE DYNAMICS
  • 1997-07. Global and regional variability in a coupled AOGCM in CLIMATE DYNAMICS
  • 2001-02. The Flood Characteristics of Large U.K. Rivers: Potential Effects of Changing Climate and Land Use in CLIMATIC CHANGE
  • 1999-03. Towards the Construction of Climate Change Scenarios in CLIMATIC CHANGE
  • 2000-10. Quantifying the uncertainty in forecasts of anthropogenic climate change in NATURE
  • 1996-06. The risk of sea level rise in CLIMATIC CHANGE
  • 2001-05. Use of an upwelling-diffusion energy balance climate model to simulate and diagnose A/OGCM results in CLIMATE DYNAMICS
  • 1998-02. Uncertainty, Complexity and Concepts of Good Science in Climate Change Modelling: Are GCMs the Best Tools? in CLIMATIC CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1026035305597

    DOI

    http://dx.doi.org/10.1023/a:1026035305597

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035832790


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.8273.e", 
              "name": [
                "Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mitchell", 
            "givenName": "Timothy D.", 
            "id": "sg:person.010257262374.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010257262374.66"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/35083752", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001644896", 
              "https://doi.org/10.1038/35083752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820000067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022442065", 
              "https://doi.org/10.1007/s003820000067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00139303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042282518", 
              "https://doi.org/10.1007/bf00139303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005390515242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040747782", 
              "https://doi.org/10.1023/a:1005390515242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00007925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012247046", 
              "https://doi.org/10.1007/pl00007925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00140246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041017816", 
              "https://doi.org/10.1007/bf00140246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033132277", 
              "https://doi.org/10.1007/s003820050168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005697118423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051824999", 
              "https://doi.org/10.1023/a:1005697118423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005466909820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045135939", 
              "https://doi.org/10.1023/a:1005466909820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/44266", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034790274", 
              "https://doi.org/10.1038/44266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005310109968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019661031", 
              "https://doi.org/10.1023/a:1005310109968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010735726818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028604793", 
              "https://doi.org/10.1023/a:1010735726818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35075167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050710036", 
              "https://doi.org/10.1038/35075167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/416723a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022821020", 
              "https://doi.org/10.1038/416723a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35036559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016303772", 
              "https://doi.org/10.1038/35036559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1019144202120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020294511", 
              "https://doi.org/10.1023/a:1019144202120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043746611", 
              "https://doi.org/10.1007/s003820050155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35086617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029980884", 
              "https://doi.org/10.1038/35086617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1014276210717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015500189", 
              "https://doi.org/10.1023/a:1014276210717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00007931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017112900", 
              "https://doi.org/10.1007/pl00007931"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-10", 
        "datePublishedReg": "2003-10-01", 
        "description": "A fully probabilistic, or risk, assessment of future regional climate changeand its impacts involves more scenarios of radiative forcing than can besimulated by a general (GCM) or regional (RCM) circulation model. Additionalscenarios may be created by scaling a spatial response pattern from a GCM bya global warming projection from a simple climate model. I examine thistechnique, known as pattern scaling, using a particular GCM (HadCM2).Thecritical assumption is that there is a linear relationship between the scaler(annual global-mean temperature) and the response pattern. Previous studieshave found this assumption to be broadly valid for annual temperature; Iextend this conclusion to precipitation and seasonal (JJA) climate. However,slight non-linearities arise from the dependence of the climatic response onthe rate, not just the amount, of change in the scaler. These non-linearitiesintroduce some significant errors into the estimates made by pattern scaling,but nonetheless the estimates accurately represent the modelled changes. Aresponse pattern may be made more robust by lengthening the period from whichit is obtained, by anomalising it relative to the control simulation, and byusing least squares regression to obtain it. The errors arising from patternscaling may be minimised by interpolating from a stronger to a weaker forcingscenario.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1026035305597", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1028211", 
            "issn": [
              "0165-0009", 
              "1573-1480"
            ], 
            "name": "Climatic Change", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "60"
          }
        ], 
        "keywords": [
          "pattern scaling", 
          "global warming projections", 
          "future regional climate", 
          "regional circulation model", 
          "simple climate model", 
          "spatial response patterns", 
          "particular GCM", 
          "climate models", 
          "regional climate", 
          "circulation model", 
          "radiative forcing", 
          "climatic response", 
          "future climate", 
          "seasonal climate", 
          "control simulation", 
          "annual temperature", 
          "climate", 
          "Previous studieshave", 
          "significant errors", 
          "GCM", 
          "forcing", 
          "precipitation", 
          "estimates", 
          "more scenarios", 
          "patterns", 
          "linear relationship", 
          "changes", 
          "projections", 
          "response patterns", 
          "least squares regression", 
          "model", 
          "period", 
          "scenarios", 
          "error", 
          "thistechnique", 
          "temperature", 
          "whichit", 
          "squares regression", 
          "impact", 
          "scaling", 
          "simulations", 
          "assumption", 
          "amount", 
          "assessment", 
          "relationship", 
          "studieshave", 
          "rate", 
          "dependence", 
          "accuracy", 
          "response", 
          "regression", 
          "technique", 
          "risk", 
          "General", 
          "conclusion", 
          "scaler", 
          "examination"
        ], 
        "name": "Pattern Scaling: An Examination of the Accuracy of the Technique for Describing Future Climates", 
        "pagination": "217-242", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035832790"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1026035305597"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1026035305597", 
          "https://app.dimensions.ai/details/publication/pub.1035832790"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_363.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1026035305597"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1026035305597'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1026035305597'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1026035305597'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1026035305597'


     

    This table displays all metadata directly associated to this object as RDF triples.

    194 TRIPLES      21 PREDICATES      102 URIs      74 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1026035305597 schema:about anzsrc-for:04
    2 anzsrc-for:0406
    3 schema:author N1fa6a11f548d4d9ca355bcb532ae9205
    4 schema:citation sg:pub.10.1007/bf00139303
    5 sg:pub.10.1007/bf00140246
    6 sg:pub.10.1007/pl00007925
    7 sg:pub.10.1007/pl00007931
    8 sg:pub.10.1007/s003820000067
    9 sg:pub.10.1007/s003820050155
    10 sg:pub.10.1007/s003820050168
    11 sg:pub.10.1023/a:1005310109968
    12 sg:pub.10.1023/a:1005390515242
    13 sg:pub.10.1023/a:1005466909820
    14 sg:pub.10.1023/a:1005697118423
    15 sg:pub.10.1023/a:1010735726818
    16 sg:pub.10.1023/a:1014276210717
    17 sg:pub.10.1023/a:1019144202120
    18 sg:pub.10.1038/35036559
    19 sg:pub.10.1038/35075167
    20 sg:pub.10.1038/35083752
    21 sg:pub.10.1038/35086617
    22 sg:pub.10.1038/416723a
    23 sg:pub.10.1038/44266
    24 schema:datePublished 2003-10
    25 schema:datePublishedReg 2003-10-01
    26 schema:description A fully probabilistic, or risk, assessment of future regional climate changeand its impacts involves more scenarios of radiative forcing than can besimulated by a general (GCM) or regional (RCM) circulation model. Additionalscenarios may be created by scaling a spatial response pattern from a GCM bya global warming projection from a simple climate model. I examine thistechnique, known as pattern scaling, using a particular GCM (HadCM2).Thecritical assumption is that there is a linear relationship between the scaler(annual global-mean temperature) and the response pattern. Previous studieshave found this assumption to be broadly valid for annual temperature; Iextend this conclusion to precipitation and seasonal (JJA) climate. However,slight non-linearities arise from the dependence of the climatic response onthe rate, not just the amount, of change in the scaler. These non-linearitiesintroduce some significant errors into the estimates made by pattern scaling,but nonetheless the estimates accurately represent the modelled changes. Aresponse pattern may be made more robust by lengthening the period from whichit is obtained, by anomalising it relative to the control simulation, and byusing least squares regression to obtain it. The errors arising from patternscaling may be minimised by interpolating from a stronger to a weaker forcingscenario.
    27 schema:genre article
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N2d01477836cd47098f3621e52c62955f
    30 Nc2b61baef8ee4ec888715f077f14ad98
    31 sg:journal.1028211
    32 schema:keywords GCM
    33 General
    34 Previous studieshave
    35 accuracy
    36 amount
    37 annual temperature
    38 assessment
    39 assumption
    40 changes
    41 circulation model
    42 climate
    43 climate models
    44 climatic response
    45 conclusion
    46 control simulation
    47 dependence
    48 error
    49 estimates
    50 examination
    51 forcing
    52 future climate
    53 future regional climate
    54 global warming projections
    55 impact
    56 least squares regression
    57 linear relationship
    58 model
    59 more scenarios
    60 particular GCM
    61 pattern scaling
    62 patterns
    63 period
    64 precipitation
    65 projections
    66 radiative forcing
    67 rate
    68 regional circulation model
    69 regional climate
    70 regression
    71 relationship
    72 response
    73 response patterns
    74 risk
    75 scaler
    76 scaling
    77 scenarios
    78 seasonal climate
    79 significant errors
    80 simple climate model
    81 simulations
    82 spatial response patterns
    83 squares regression
    84 studieshave
    85 technique
    86 temperature
    87 thistechnique
    88 whichit
    89 schema:name Pattern Scaling: An Examination of the Accuracy of the Technique for Describing Future Climates
    90 schema:pagination 217-242
    91 schema:productId N765d259b053847bbac7a093f671c67c8
    92 Nb690538a98ea4ac88c9d2fa41404819d
    93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035832790
    94 https://doi.org/10.1023/a:1026035305597
    95 schema:sdDatePublished 2022-12-01T06:23
    96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    97 schema:sdPublisher Nb4a9053582894a8e8430f2795d34d33d
    98 schema:url https://doi.org/10.1023/a:1026035305597
    99 sgo:license sg:explorer/license/
    100 sgo:sdDataset articles
    101 rdf:type schema:ScholarlyArticle
    102 N1fa6a11f548d4d9ca355bcb532ae9205 rdf:first sg:person.010257262374.66
    103 rdf:rest rdf:nil
    104 N2d01477836cd47098f3621e52c62955f schema:volumeNumber 60
    105 rdf:type schema:PublicationVolume
    106 N765d259b053847bbac7a093f671c67c8 schema:name doi
    107 schema:value 10.1023/a:1026035305597
    108 rdf:type schema:PropertyValue
    109 Nb4a9053582894a8e8430f2795d34d33d schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 Nb690538a98ea4ac88c9d2fa41404819d schema:name dimensions_id
    112 schema:value pub.1035832790
    113 rdf:type schema:PropertyValue
    114 Nc2b61baef8ee4ec888715f077f14ad98 schema:issueNumber 3
    115 rdf:type schema:PublicationIssue
    116 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Earth Sciences
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Physical Geography and Environmental Geoscience
    121 rdf:type schema:DefinedTerm
    122 sg:journal.1028211 schema:issn 0165-0009
    123 1573-1480
    124 schema:name Climatic Change
    125 schema:publisher Springer Nature
    126 rdf:type schema:Periodical
    127 sg:person.010257262374.66 schema:affiliation grid-institutes:grid.8273.e
    128 schema:familyName Mitchell
    129 schema:givenName Timothy D.
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010257262374.66
    131 rdf:type schema:Person
    132 sg:pub.10.1007/bf00139303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042282518
    133 https://doi.org/10.1007/bf00139303
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/bf00140246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041017816
    136 https://doi.org/10.1007/bf00140246
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/pl00007925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012247046
    139 https://doi.org/10.1007/pl00007925
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/pl00007931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017112900
    142 https://doi.org/10.1007/pl00007931
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/s003820000067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022442065
    145 https://doi.org/10.1007/s003820000067
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/s003820050155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043746611
    148 https://doi.org/10.1007/s003820050155
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s003820050168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033132277
    151 https://doi.org/10.1007/s003820050168
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1023/a:1005310109968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019661031
    154 https://doi.org/10.1023/a:1005310109968
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1023/a:1005390515242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040747782
    157 https://doi.org/10.1023/a:1005390515242
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1023/a:1005466909820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045135939
    160 https://doi.org/10.1023/a:1005466909820
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1023/a:1005697118423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051824999
    163 https://doi.org/10.1023/a:1005697118423
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1023/a:1010735726818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028604793
    166 https://doi.org/10.1023/a:1010735726818
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1023/a:1014276210717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015500189
    169 https://doi.org/10.1023/a:1014276210717
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1023/a:1019144202120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020294511
    172 https://doi.org/10.1023/a:1019144202120
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/35036559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016303772
    175 https://doi.org/10.1038/35036559
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/35075167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050710036
    178 https://doi.org/10.1038/35075167
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/35083752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001644896
    181 https://doi.org/10.1038/35083752
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/35086617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029980884
    184 https://doi.org/10.1038/35086617
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/416723a schema:sameAs https://app.dimensions.ai/details/publication/pub.1022821020
    187 https://doi.org/10.1038/416723a
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/44266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034790274
    190 https://doi.org/10.1038/44266
    191 rdf:type schema:CreativeWork
    192 grid-institutes:grid.8273.e schema:alternateName Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, U.K.
    193 schema:name Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, U.K.
    194 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...