Exact Upper Bound on the Mean of the Product of Many Random Variables with Known Expectations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-12

AUTHORS

Vladik Kreinovich, Scott Ferson, Lev Ginzburg

ABSTRACT

In practice, in addition to the intervals xi = [xi, xi] of possible values of inputs x1, ..., xn, we sometimes also know their means Ei. For such cases, we provide an explicit exact (= best possible) upper bound for the mean of the product x1 ⋅ ... ⋅ xn of positive values xi. More... »

PAGES

441-463

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1025841220835

DOI

http://dx.doi.org/10.1023/a:1025841220835

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036083012


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computer Science Department, University of Texas at El Paso, 79968, El Paso, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.267324.6", 
          "name": [
            "Computer Science Department, University of Texas at El Paso, 79968, El Paso, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kreinovich", 
        "givenName": "Vladik", 
        "id": "sg:person.012602771355.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012602771355.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Biomathematics, 100 North Country Road, 11733, Setauket, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.422751.7", 
          "name": [
            "Applied Biomathematics, 100 North Country Road, 11733, Setauket, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferson", 
        "givenName": "Scott", 
        "id": "sg:person.0612335353.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612335353.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Biomathematics, 100 North Country Road, 11733, Setauket, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.422751.7", 
          "name": [
            "Applied Biomathematics, 100 North Country Road, 11733, Setauket, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ginzburg", 
        "givenName": "Lev", 
        "id": "sg:person.015102730643.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015102730643.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1023082100128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046718691", 
          "https://doi.org/10.1023/a:1023082100128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009933109326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051289516", 
          "https://doi.org/10.1023/a:1009933109326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1023090317875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035979898", 
          "https://doi.org/10.1023/a:1023090317875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-3440-8_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037731555", 
          "https://doi.org/10.1007/978-1-4613-3440-8_10"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-12", 
    "datePublishedReg": "2003-12-01", 
    "description": "In practice, in addition to the intervals xi = [xi, xi] of possible values of inputs x1, ..., xn, we sometimes also know their means Ei. For such cases, we provide an explicit exact (= best possible) upper bound for the mean of the product x1 \u22c5 ... \u22c5 xn of positive values xi.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1025841220835", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1140838", 
        "issn": [
          "1385-3139", 
          "1573-1340"
        ], 
        "name": "Reliable Computing", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "exact upper bounds", 
      "random variables", 
      "upper bounds", 
      "values xi", 
      "possible values", 
      "X1", 
      "bounds", 
      "Xn", 
      "mean EI", 
      "XI", 
      "variables", 
      "such cases", 
      "means", 
      "cases", 
      "values", 
      "EI", 
      "expectations", 
      "addition", 
      "products", 
      "practice", 
      "intervals xi", 
      "inputs x1", 
      "product x1", 
      "positive values xi", 
      "Known Expectations"
    ], 
    "name": "Exact Upper Bound on the Mean of the Product of Many Random Variables with Known Expectations", 
    "pagination": "441-463", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036083012"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1025841220835"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1025841220835", 
      "https://app.dimensions.ai/details/publication/pub.1036083012"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_371.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1025841220835"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1025841220835'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1025841220835'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1025841220835'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1025841220835'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      22 PREDICATES      55 URIs      43 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1025841220835 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N71d69cf1340c4aec826f155571895a16
4 schema:citation sg:pub.10.1007/978-1-4613-3440-8_10
5 sg:pub.10.1023/a:1009933109326
6 sg:pub.10.1023/a:1023082100128
7 sg:pub.10.1023/a:1023090317875
8 schema:datePublished 2003-12
9 schema:datePublishedReg 2003-12-01
10 schema:description In practice, in addition to the intervals xi = [xi, xi] of possible values of inputs x1, ..., xn, we sometimes also know their means Ei. For such cases, we provide an explicit exact (= best possible) upper bound for the mean of the product x1 ⋅ ... ⋅ xn of positive values xi.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N30d64969e4a243e69efe3645503a8f77
15 Nd33e66cb782f4cb9bd6fc4d3a64b1e61
16 sg:journal.1140838
17 schema:keywords EI
18 Known Expectations
19 X1
20 XI
21 Xn
22 addition
23 bounds
24 cases
25 exact upper bounds
26 expectations
27 inputs x1
28 intervals xi
29 mean EI
30 means
31 positive values xi
32 possible values
33 practice
34 product x1
35 products
36 random variables
37 such cases
38 upper bounds
39 values
40 values xi
41 variables
42 schema:name Exact Upper Bound on the Mean of the Product of Many Random Variables with Known Expectations
43 schema:pagination 441-463
44 schema:productId N9183e2d58b4646a0a6d35c5db7a490af
45 Nf9c7e2661f0646edac9f1368929f9415
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036083012
47 https://doi.org/10.1023/a:1025841220835
48 schema:sdDatePublished 2021-11-01T18:06
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nc9ad9cc2a2d34f70aefa0f1c4aea7f16
51 schema:url https://doi.org/10.1023/a:1025841220835
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N30d64969e4a243e69efe3645503a8f77 schema:volumeNumber 9
56 rdf:type schema:PublicationVolume
57 N4f4f71341df34ecab1ee157ea47bb991 rdf:first sg:person.015102730643.26
58 rdf:rest rdf:nil
59 N71d69cf1340c4aec826f155571895a16 rdf:first sg:person.012602771355.27
60 rdf:rest Nded2b1f7867e471fa35f5f8f1ac86f5b
61 N9183e2d58b4646a0a6d35c5db7a490af schema:name doi
62 schema:value 10.1023/a:1025841220835
63 rdf:type schema:PropertyValue
64 Nc9ad9cc2a2d34f70aefa0f1c4aea7f16 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nd33e66cb782f4cb9bd6fc4d3a64b1e61 schema:issueNumber 6
67 rdf:type schema:PublicationIssue
68 Nded2b1f7867e471fa35f5f8f1ac86f5b rdf:first sg:person.0612335353.21
69 rdf:rest N4f4f71341df34ecab1ee157ea47bb991
70 Nf9c7e2661f0646edac9f1368929f9415 schema:name dimensions_id
71 schema:value pub.1036083012
72 rdf:type schema:PropertyValue
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
77 schema:name Pure Mathematics
78 rdf:type schema:DefinedTerm
79 sg:journal.1140838 schema:issn 1385-3139
80 1573-1340
81 schema:name Reliable Computing
82 schema:publisher Springer Nature
83 rdf:type schema:Periodical
84 sg:person.012602771355.27 schema:affiliation grid-institutes:grid.267324.6
85 schema:familyName Kreinovich
86 schema:givenName Vladik
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012602771355.27
88 rdf:type schema:Person
89 sg:person.015102730643.26 schema:affiliation grid-institutes:grid.422751.7
90 schema:familyName Ginzburg
91 schema:givenName Lev
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015102730643.26
93 rdf:type schema:Person
94 sg:person.0612335353.21 schema:affiliation grid-institutes:grid.422751.7
95 schema:familyName Ferson
96 schema:givenName Scott
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612335353.21
98 rdf:type schema:Person
99 sg:pub.10.1007/978-1-4613-3440-8_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037731555
100 https://doi.org/10.1007/978-1-4613-3440-8_10
101 rdf:type schema:CreativeWork
102 sg:pub.10.1023/a:1009933109326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051289516
103 https://doi.org/10.1023/a:1009933109326
104 rdf:type schema:CreativeWork
105 sg:pub.10.1023/a:1023082100128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046718691
106 https://doi.org/10.1023/a:1023082100128
107 rdf:type schema:CreativeWork
108 sg:pub.10.1023/a:1023090317875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035979898
109 https://doi.org/10.1023/a:1023090317875
110 rdf:type schema:CreativeWork
111 grid-institutes:grid.267324.6 schema:alternateName Computer Science Department, University of Texas at El Paso, 79968, El Paso, TX, USA
112 schema:name Computer Science Department, University of Texas at El Paso, 79968, El Paso, TX, USA
113 rdf:type schema:Organization
114 grid-institutes:grid.422751.7 schema:alternateName Applied Biomathematics, 100 North Country Road, 11733, Setauket, NY, USA
115 schema:name Applied Biomathematics, 100 North Country Road, 11733, Setauket, NY, USA
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...