Polarization of the Electron–Positron Vacuum by a Strong Magnetic Field in the Theory with a Fundamental Mass View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-09

AUTHORS

V. G. Kadyshevsky, V. N. Rodionov

ABSTRACT

In the framework of the theory with a fundamental mass in the one-loop approximation, we evaluate the exact Lagrange function of the strong constant magnetic field, replacing the Heisenberg–Euler Lagrangian in the traditional QED. We establish that the derived generalization of the Lagrange function is real for arbitrary values of the magnetic field. In the weak field, the evaluated Lagrangian coincides with the known Heisenberg–Euler formula. In extremely strong fields, the field dependence of the Lagrangian completely disappears; in this range, the Lagrangian tends to the limit value determined by the ratio of the fundamental and lepton masses. More... »

PAGES

1346-1356

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1025611618352

DOI

http://dx.doi.org/10.1023/a:1025611618352

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008084198


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Joint Institute for Nuclear Research", 
          "id": "https://www.grid.ac/institutes/grid.33762.33", 
          "name": [
            "Joint Institute for Nuclear Research, Dubna, Moscow Oblast"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadyshevsky", 
        "givenName": "V. G.", 
        "id": "sg:person.014066307715.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014066307715.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Moscow State Geological Prospecting Academy, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodionov", 
        "givenName": "V. N.", 
        "id": "sg:person.011164524043.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011164524043.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/1.1490000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006326946", 
          "https://doi.org/10.1134/1.1490000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020650115149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012270579", 
          "https://doi.org/10.1023/a:1020650115149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(98)00825-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015430013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01343663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018417263", 
          "https://doi.org/10.1007/bf01343663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(81)91097-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020476402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(81)91097-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020476402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.64.013014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021440812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.64.013014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021440812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026606113019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021785196", 
          "https://doi.org/10.1023/a:1026606113019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(96)01346-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038656849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjc/s2003-01136-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039313625", 
          "https://doi.org/10.1140/epjc/s2003-01136-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012427829946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042444507", 
          "https://doi.org/10.1023/a:1012427829946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(02)00242-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046950010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/16199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047387262", 
          "https://doi.org/10.1038/16199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90041-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052348914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90041-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052348914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.51.4944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.51.4944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.4.3643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060697235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.4.3643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060697235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.8.1103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060707365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.8.1103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060707365"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-09", 
    "datePublishedReg": "2003-09-01", 
    "description": "In the framework of the theory with a fundamental mass in the one-loop approximation, we evaluate the exact Lagrange function of the strong constant magnetic field, replacing the Heisenberg\u2013Euler Lagrangian in the traditional QED. We establish that the derived generalization of the Lagrange function is real for arbitrary values of the magnetic field. In the weak field, the evaluated Lagrangian coincides with the known Heisenberg\u2013Euler formula. In extremely strong fields, the field dependence of the Lagrangian completely disappears; in this range, the Lagrangian tends to the limit value determined by the ratio of the fundamental and lepton masses.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1025611618352", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "2305-3135"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "136"
      }
    ], 
    "name": "Polarization of the Electron\u2013Positron Vacuum by a Strong Magnetic Field in the Theory with a Fundamental Mass", 
    "pagination": "1346-1356", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2683601c6c22603abf54d28d13e1de2b82e64c161adbc19359f56546fc9c0a7d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1025611618352"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008084198"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1025611618352", 
      "https://app.dimensions.ai/details/publication/pub.1008084198"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1025611618352"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1025611618352'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1025611618352'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1025611618352'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1025611618352'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1025611618352 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5416394442b74c2c836bea691ba1dfcf
4 schema:citation sg:pub.10.1007/bf01343663
5 sg:pub.10.1023/a:1012427829946
6 sg:pub.10.1023/a:1020650115149
7 sg:pub.10.1023/a:1026606113019
8 sg:pub.10.1038/16199
9 sg:pub.10.1134/1.1490000
10 sg:pub.10.1140/epjc/s2003-01136-2
11 https://doi.org/10.1016/0370-2693(81)91097-2
12 https://doi.org/10.1016/0550-3213(78)90041-x
13 https://doi.org/10.1016/s0370-2693(96)01346-9
14 https://doi.org/10.1016/s0370-2693(98)00825-9
15 https://doi.org/10.1016/s0550-3213(02)00242-0
16 https://doi.org/10.1103/physreva.51.4944
17 https://doi.org/10.1103/physrevd.4.3643
18 https://doi.org/10.1103/physrevd.64.013014
19 https://doi.org/10.1103/physrevd.8.1103
20 schema:datePublished 2003-09
21 schema:datePublishedReg 2003-09-01
22 schema:description In the framework of the theory with a fundamental mass in the one-loop approximation, we evaluate the exact Lagrange function of the strong constant magnetic field, replacing the Heisenberg–Euler Lagrangian in the traditional QED. We establish that the derived generalization of the Lagrange function is real for arbitrary values of the magnetic field. In the weak field, the evaluated Lagrangian coincides with the known Heisenberg–Euler formula. In extremely strong fields, the field dependence of the Lagrangian completely disappears; in this range, the Lagrangian tends to the limit value determined by the ratio of the fundamental and lepton masses.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N28afc3441d794a8aa9b551a58c7857ef
27 N71d34e7c610c456b93df70f017e91032
28 sg:journal.1327888
29 schema:name Polarization of the Electron–Positron Vacuum by a Strong Magnetic Field in the Theory with a Fundamental Mass
30 schema:pagination 1346-1356
31 schema:productId N175958483cda42d4b037fffd7a1dce08
32 N87df655f0fa34f6da4b610364783bd59
33 Nd6d12537e68542cf90196dc012793ce1
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008084198
35 https://doi.org/10.1023/a:1025611618352
36 schema:sdDatePublished 2019-04-10T18:18
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N4ec94349a4ff4892a8ae77a1e45277be
39 schema:url http://link.springer.com/10.1023%2FA%3A1025611618352
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N175958483cda42d4b037fffd7a1dce08 schema:name doi
44 schema:value 10.1023/a:1025611618352
45 rdf:type schema:PropertyValue
46 N28afc3441d794a8aa9b551a58c7857ef schema:volumeNumber 136
47 rdf:type schema:PublicationVolume
48 N4ec94349a4ff4892a8ae77a1e45277be schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N5416394442b74c2c836bea691ba1dfcf rdf:first sg:person.014066307715.22
51 rdf:rest Nc68d70dd782c4c8292bf053a81a2e94a
52 N71d34e7c610c456b93df70f017e91032 schema:issueNumber 3
53 rdf:type schema:PublicationIssue
54 N855e6b9eef694d61b4e3f250a7baf33c schema:name Moscow State Geological Prospecting Academy, Moscow, Russia
55 rdf:type schema:Organization
56 N87df655f0fa34f6da4b610364783bd59 schema:name dimensions_id
57 schema:value pub.1008084198
58 rdf:type schema:PropertyValue
59 Nc68d70dd782c4c8292bf053a81a2e94a rdf:first sg:person.011164524043.88
60 rdf:rest rdf:nil
61 Nd6d12537e68542cf90196dc012793ce1 schema:name readcube_id
62 schema:value 2683601c6c22603abf54d28d13e1de2b82e64c161adbc19359f56546fc9c0a7d
63 rdf:type schema:PropertyValue
64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
65 schema:name Mathematical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
68 schema:name Pure Mathematics
69 rdf:type schema:DefinedTerm
70 sg:journal.1327888 schema:issn 0040-5779
71 2305-3135
72 schema:name Theoretical and Mathematical Physics
73 rdf:type schema:Periodical
74 sg:person.011164524043.88 schema:affiliation N855e6b9eef694d61b4e3f250a7baf33c
75 schema:familyName Rodionov
76 schema:givenName V. N.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011164524043.88
78 rdf:type schema:Person
79 sg:person.014066307715.22 schema:affiliation https://www.grid.ac/institutes/grid.33762.33
80 schema:familyName Kadyshevsky
81 schema:givenName V. G.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014066307715.22
83 rdf:type schema:Person
84 sg:pub.10.1007/bf01343663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018417263
85 https://doi.org/10.1007/bf01343663
86 rdf:type schema:CreativeWork
87 sg:pub.10.1023/a:1012427829946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042444507
88 https://doi.org/10.1023/a:1012427829946
89 rdf:type schema:CreativeWork
90 sg:pub.10.1023/a:1020650115149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012270579
91 https://doi.org/10.1023/a:1020650115149
92 rdf:type schema:CreativeWork
93 sg:pub.10.1023/a:1026606113019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021785196
94 https://doi.org/10.1023/a:1026606113019
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/16199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047387262
97 https://doi.org/10.1038/16199
98 rdf:type schema:CreativeWork
99 sg:pub.10.1134/1.1490000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006326946
100 https://doi.org/10.1134/1.1490000
101 rdf:type schema:CreativeWork
102 sg:pub.10.1140/epjc/s2003-01136-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039313625
103 https://doi.org/10.1140/epjc/s2003-01136-2
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0370-2693(81)91097-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020476402
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0550-3213(78)90041-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052348914
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s0370-2693(96)01346-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038656849
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0370-2693(98)00825-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015430013
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0550-3213(02)00242-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046950010
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physreva.51.4944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060490366
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevd.4.3643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060697235
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevd.64.013014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021440812
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevd.8.1103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060707365
122 rdf:type schema:CreativeWork
123 https://www.grid.ac/institutes/grid.33762.33 schema:alternateName Joint Institute for Nuclear Research
124 schema:name Joint Institute for Nuclear Research, Dubna, Moscow Oblast
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...