Polarization of the Electron–Positron Vacuum by a Strong Magnetic Field in the Theory with a Fundamental Mass View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-09

AUTHORS

V. G. Kadyshevsky, V. N. Rodionov

ABSTRACT

In the framework of the theory with a fundamental mass in the one-loop approximation, we evaluate the exact Lagrange function of the strong constant magnetic field, replacing the Heisenberg–Euler Lagrangian in the traditional QED. We establish that the derived generalization of the Lagrange function is real for arbitrary values of the magnetic field. In the weak field, the evaluated Lagrangian coincides with the known Heisenberg–Euler formula. In extremely strong fields, the field dependence of the Lagrangian completely disappears; in this range, the Lagrangian tends to the limit value determined by the ratio of the fundamental and lepton masses. More... »

PAGES

1346-1356

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1025611618352

DOI

http://dx.doi.org/10.1023/a:1025611618352

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008084198


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Joint Institute for Nuclear Research", 
          "id": "https://www.grid.ac/institutes/grid.33762.33", 
          "name": [
            "Joint Institute for Nuclear Research, Dubna, Moscow Oblast"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadyshevsky", 
        "givenName": "V. G.", 
        "id": "sg:person.014066307715.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014066307715.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Moscow State Geological Prospecting Academy, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodionov", 
        "givenName": "V. N.", 
        "id": "sg:person.011164524043.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011164524043.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/1.1490000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006326946", 
          "https://doi.org/10.1134/1.1490000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020650115149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012270579", 
          "https://doi.org/10.1023/a:1020650115149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(98)00825-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015430013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01343663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018417263", 
          "https://doi.org/10.1007/bf01343663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(81)91097-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020476402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(81)91097-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020476402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.64.013014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021440812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.64.013014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021440812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026606113019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021785196", 
          "https://doi.org/10.1023/a:1026606113019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(96)01346-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038656849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjc/s2003-01136-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039313625", 
          "https://doi.org/10.1140/epjc/s2003-01136-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012427829946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042444507", 
          "https://doi.org/10.1023/a:1012427829946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(02)00242-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046950010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/16199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047387262", 
          "https://doi.org/10.1038/16199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90041-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052348914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90041-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052348914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.51.4944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.51.4944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.4.3643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060697235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.4.3643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060697235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.8.1103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060707365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.8.1103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060707365"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-09", 
    "datePublishedReg": "2003-09-01", 
    "description": "In the framework of the theory with a fundamental mass in the one-loop approximation, we evaluate the exact Lagrange function of the strong constant magnetic field, replacing the Heisenberg\u2013Euler Lagrangian in the traditional QED. We establish that the derived generalization of the Lagrange function is real for arbitrary values of the magnetic field. In the weak field, the evaluated Lagrangian coincides with the known Heisenberg\u2013Euler formula. In extremely strong fields, the field dependence of the Lagrangian completely disappears; in this range, the Lagrangian tends to the limit value determined by the ratio of the fundamental and lepton masses.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1025611618352", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "2305-3135"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "136"
      }
    ], 
    "name": "Polarization of the Electron\u2013Positron Vacuum by a Strong Magnetic Field in the Theory with a Fundamental Mass", 
    "pagination": "1346-1356", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2683601c6c22603abf54d28d13e1de2b82e64c161adbc19359f56546fc9c0a7d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1025611618352"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008084198"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1025611618352", 
      "https://app.dimensions.ai/details/publication/pub.1008084198"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1025611618352"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1025611618352'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1025611618352'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1025611618352'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1025611618352'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1025611618352 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ncc9953be36bd4ae5b93c617b32d1810a
4 schema:citation sg:pub.10.1007/bf01343663
5 sg:pub.10.1023/a:1012427829946
6 sg:pub.10.1023/a:1020650115149
7 sg:pub.10.1023/a:1026606113019
8 sg:pub.10.1038/16199
9 sg:pub.10.1134/1.1490000
10 sg:pub.10.1140/epjc/s2003-01136-2
11 https://doi.org/10.1016/0370-2693(81)91097-2
12 https://doi.org/10.1016/0550-3213(78)90041-x
13 https://doi.org/10.1016/s0370-2693(96)01346-9
14 https://doi.org/10.1016/s0370-2693(98)00825-9
15 https://doi.org/10.1016/s0550-3213(02)00242-0
16 https://doi.org/10.1103/physreva.51.4944
17 https://doi.org/10.1103/physrevd.4.3643
18 https://doi.org/10.1103/physrevd.64.013014
19 https://doi.org/10.1103/physrevd.8.1103
20 schema:datePublished 2003-09
21 schema:datePublishedReg 2003-09-01
22 schema:description In the framework of the theory with a fundamental mass in the one-loop approximation, we evaluate the exact Lagrange function of the strong constant magnetic field, replacing the Heisenberg–Euler Lagrangian in the traditional QED. We establish that the derived generalization of the Lagrange function is real for arbitrary values of the magnetic field. In the weak field, the evaluated Lagrangian coincides with the known Heisenberg–Euler formula. In extremely strong fields, the field dependence of the Lagrangian completely disappears; in this range, the Lagrangian tends to the limit value determined by the ratio of the fundamental and lepton masses.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N3d5cafc3319d4da9b6b895e99a1fe541
27 Ncd6b01ab25b4457b96c3bcaee676220a
28 sg:journal.1327888
29 schema:name Polarization of the Electron–Positron Vacuum by a Strong Magnetic Field in the Theory with a Fundamental Mass
30 schema:pagination 1346-1356
31 schema:productId N21af48b90c414babb7cd2b3c0ea28cfb
32 N611b4e21fecc458b94ad7bc3c4855215
33 N8991400a3c034532a8a289950cb83ed6
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008084198
35 https://doi.org/10.1023/a:1025611618352
36 schema:sdDatePublished 2019-04-10T18:18
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Nf127cdea10ab4e26a664680a440570da
39 schema:url http://link.springer.com/10.1023%2FA%3A1025611618352
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N21af48b90c414babb7cd2b3c0ea28cfb schema:name readcube_id
44 schema:value 2683601c6c22603abf54d28d13e1de2b82e64c161adbc19359f56546fc9c0a7d
45 rdf:type schema:PropertyValue
46 N3d5cafc3319d4da9b6b895e99a1fe541 schema:issueNumber 3
47 rdf:type schema:PublicationIssue
48 N445fb89d46c4469cb8cf3301b961f6af schema:name Moscow State Geological Prospecting Academy, Moscow, Russia
49 rdf:type schema:Organization
50 N5186f5b6b3b9424b8b56bc8a084f50db rdf:first sg:person.011164524043.88
51 rdf:rest rdf:nil
52 N611b4e21fecc458b94ad7bc3c4855215 schema:name dimensions_id
53 schema:value pub.1008084198
54 rdf:type schema:PropertyValue
55 N8991400a3c034532a8a289950cb83ed6 schema:name doi
56 schema:value 10.1023/a:1025611618352
57 rdf:type schema:PropertyValue
58 Ncc9953be36bd4ae5b93c617b32d1810a rdf:first sg:person.014066307715.22
59 rdf:rest N5186f5b6b3b9424b8b56bc8a084f50db
60 Ncd6b01ab25b4457b96c3bcaee676220a schema:volumeNumber 136
61 rdf:type schema:PublicationVolume
62 Nf127cdea10ab4e26a664680a440570da schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
65 schema:name Mathematical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
68 schema:name Pure Mathematics
69 rdf:type schema:DefinedTerm
70 sg:journal.1327888 schema:issn 0040-5779
71 2305-3135
72 schema:name Theoretical and Mathematical Physics
73 rdf:type schema:Periodical
74 sg:person.011164524043.88 schema:affiliation N445fb89d46c4469cb8cf3301b961f6af
75 schema:familyName Rodionov
76 schema:givenName V. N.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011164524043.88
78 rdf:type schema:Person
79 sg:person.014066307715.22 schema:affiliation https://www.grid.ac/institutes/grid.33762.33
80 schema:familyName Kadyshevsky
81 schema:givenName V. G.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014066307715.22
83 rdf:type schema:Person
84 sg:pub.10.1007/bf01343663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018417263
85 https://doi.org/10.1007/bf01343663
86 rdf:type schema:CreativeWork
87 sg:pub.10.1023/a:1012427829946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042444507
88 https://doi.org/10.1023/a:1012427829946
89 rdf:type schema:CreativeWork
90 sg:pub.10.1023/a:1020650115149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012270579
91 https://doi.org/10.1023/a:1020650115149
92 rdf:type schema:CreativeWork
93 sg:pub.10.1023/a:1026606113019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021785196
94 https://doi.org/10.1023/a:1026606113019
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/16199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047387262
97 https://doi.org/10.1038/16199
98 rdf:type schema:CreativeWork
99 sg:pub.10.1134/1.1490000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006326946
100 https://doi.org/10.1134/1.1490000
101 rdf:type schema:CreativeWork
102 sg:pub.10.1140/epjc/s2003-01136-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039313625
103 https://doi.org/10.1140/epjc/s2003-01136-2
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0370-2693(81)91097-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020476402
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0550-3213(78)90041-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052348914
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s0370-2693(96)01346-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038656849
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0370-2693(98)00825-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015430013
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0550-3213(02)00242-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046950010
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physreva.51.4944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060490366
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevd.4.3643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060697235
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevd.64.013014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021440812
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevd.8.1103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060707365
122 rdf:type schema:CreativeWork
123 https://www.grid.ac/institutes/grid.33762.33 schema:alternateName Joint Institute for Nuclear Research
124 schema:name Joint Institute for Nuclear Research, Dubna, Moscow Oblast
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...