Large Uniform Expansions of Periodic Solutions to Strongly Non-Linear Evolution Equations with Odd Polynomial Non-Linearity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-06

AUTHORS

Vasyl P. Lukomsky, Ivan S. Gandzha

ABSTRACT

A new method of uniform expansions of periodic solutions to ordinary differential equations with arbitrary odd polynomial non-linearity is constructed to study quasi-harmonic processes in non-linear dynamical systems, in particular when a small parameter of non-linearity is absent. The main idea of the method consists in using the ratio of the amplitudes of higher harmonics to the amplitude of the first harmonic of a periodic solution as a small formal parameter. In the particular case of a single-periodic solution, this small parameter appears due to descending the amplitudes of harmonics monotonically with increasing their number. Due to uniform expansion the amplitudes of higher harmonics turn out to be rational and fractional functions in the amplitude of the first harmonic and the frequency of oscillations. We show that the method of uniform expansions is an effective tool for obtaining convergent expansions of periodic solutions in explicit form all over the domain, where periodic solutions exist, independently of the magnitude of non-linearity. In each subsequent approximation, one more higher harmonic is taken into account, with all the other harmonics being corrected. We demonstrate the effectiveness of the method on the examples of the harmonically forced Duffing oscillator; free vibrations of the oscillator with fifth-power non-linearity and mathematical pendulum. More... »

PAGES

345-370

References to SciGraph publications

Journal

TITLE

Nonlinear Dynamics

ISSUE

4

VOLUME

32

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1025610619828

DOI

http://dx.doi.org/10.1023/a:1025610619828

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052691646


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.425082.9", 
          "name": [
            "Department of Theoretical Physics, Institute of Physics, National Academy of Sciences, Prospect Nauky 46, 03028, Kiev, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lukomsky", 
        "givenName": "Vasyl P.", 
        "id": "sg:person.0716737360.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716737360.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.425082.9", 
          "name": [
            "Department of Theoretical Physics, Institute of Physics, National Academy of Sciences, Prospect Nauky 46, 03028, Kiev, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gandzha", 
        "givenName": "Ivan S.", 
        "id": "sg:person.010637270167.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637270167.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jsvi.1996.0442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001594232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsvi.1994.1192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022217238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7462(86)90026-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035973055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7462(86)90026-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035973055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsvi.1996.0710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037313759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008203813615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049616768", 
          "https://doi.org/10.1023/a:1008203813615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsvi.1995.0214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053231105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112074000802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053968512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112074000802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053968512"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-06", 
    "datePublishedReg": "2003-06-01", 
    "description": "A new method of uniform expansions of periodic solutions to ordinary differential equations with arbitrary odd polynomial non-linearity is constructed to study quasi-harmonic processes in non-linear dynamical systems, in particular when a small parameter of non-linearity is absent. The main idea of the method consists in using the ratio of the amplitudes of higher harmonics to the amplitude of the first harmonic of a periodic solution as a small formal parameter. In the particular case of a single-periodic solution, this small parameter appears due to descending the amplitudes of harmonics monotonically with increasing their number. Due to uniform expansion the amplitudes of higher harmonics turn out to be rational and fractional functions in the amplitude of the first harmonic and the frequency of oscillations. We show that the method of uniform expansions is an effective tool for obtaining convergent expansions of periodic solutions in explicit form all over the domain, where periodic solutions exist, independently of the magnitude of non-linearity. In each subsequent approximation, one more higher harmonic is taken into account, with all the other harmonics being corrected. We demonstrate the effectiveness of the method on the examples of the harmonically forced Duffing oscillator; free vibrations of the oscillator with fifth-power non-linearity and mathematical pendulum.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1025610619828", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "Large Uniform Expansions of Periodic Solutions to Strongly Non-Linear Evolution Equations with Odd Polynomial Non-Linearity", 
    "pagination": "345-370", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fafc9610328c03228f64d80d2ec46863d352d5eac5051b444485306f4ac2dc3f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1025610619828"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052691646"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1025610619828", 
      "https://app.dimensions.ai/details/publication/pub.1052691646"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1025610619828"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1025610619828'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1025610619828'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1025610619828'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1025610619828'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1025610619828 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ndc63ac8d308b4845b8f43dbe20544d43
4 schema:citation sg:pub.10.1023/a:1008203813615
5 https://doi.org/10.1006/jsvi.1994.1192
6 https://doi.org/10.1006/jsvi.1995.0214
7 https://doi.org/10.1006/jsvi.1996.0442
8 https://doi.org/10.1006/jsvi.1996.0710
9 https://doi.org/10.1016/0020-7462(86)90026-0
10 https://doi.org/10.1017/s0022112074000802
11 schema:datePublished 2003-06
12 schema:datePublishedReg 2003-06-01
13 schema:description A new method of uniform expansions of periodic solutions to ordinary differential equations with arbitrary odd polynomial non-linearity is constructed to study quasi-harmonic processes in non-linear dynamical systems, in particular when a small parameter of non-linearity is absent. The main idea of the method consists in using the ratio of the amplitudes of higher harmonics to the amplitude of the first harmonic of a periodic solution as a small formal parameter. In the particular case of a single-periodic solution, this small parameter appears due to descending the amplitudes of harmonics monotonically with increasing their number. Due to uniform expansion the amplitudes of higher harmonics turn out to be rational and fractional functions in the amplitude of the first harmonic and the frequency of oscillations. We show that the method of uniform expansions is an effective tool for obtaining convergent expansions of periodic solutions in explicit form all over the domain, where periodic solutions exist, independently of the magnitude of non-linearity. In each subsequent approximation, one more higher harmonic is taken into account, with all the other harmonics being corrected. We demonstrate the effectiveness of the method on the examples of the harmonically forced Duffing oscillator; free vibrations of the oscillator with fifth-power non-linearity and mathematical pendulum.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N389a7c2c88084f1b92a0c1eac963a346
18 N7902002707e94fefa075ab61df185749
19 sg:journal.1040905
20 schema:name Large Uniform Expansions of Periodic Solutions to Strongly Non-Linear Evolution Equations with Odd Polynomial Non-Linearity
21 schema:pagination 345-370
22 schema:productId N86e34873f16a48c28d6011ff150dbea4
23 Nc9026e9f71334af1aa7b4f6669d01456
24 Nea14c50baa3c4669972e4618ac5aed8c
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052691646
26 https://doi.org/10.1023/a:1025610619828
27 schema:sdDatePublished 2019-04-10T17:30
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N873f00377e3848e1aef65c96b05ee097
30 schema:url http://link.springer.com/10.1023%2FA%3A1025610619828
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N389a7c2c88084f1b92a0c1eac963a346 schema:volumeNumber 32
35 rdf:type schema:PublicationVolume
36 N3a796b27d0524d43b1a2a49fed99925d rdf:first sg:person.010637270167.51
37 rdf:rest rdf:nil
38 N7902002707e94fefa075ab61df185749 schema:issueNumber 4
39 rdf:type schema:PublicationIssue
40 N86e34873f16a48c28d6011ff150dbea4 schema:name dimensions_id
41 schema:value pub.1052691646
42 rdf:type schema:PropertyValue
43 N873f00377e3848e1aef65c96b05ee097 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 Nc9026e9f71334af1aa7b4f6669d01456 schema:name doi
46 schema:value 10.1023/a:1025610619828
47 rdf:type schema:PropertyValue
48 Ndc63ac8d308b4845b8f43dbe20544d43 rdf:first sg:person.0716737360.30
49 rdf:rest N3a796b27d0524d43b1a2a49fed99925d
50 Nea14c50baa3c4669972e4618ac5aed8c schema:name readcube_id
51 schema:value fafc9610328c03228f64d80d2ec46863d352d5eac5051b444485306f4ac2dc3f
52 rdf:type schema:PropertyValue
53 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
54 schema:name Mathematical Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
57 schema:name Pure Mathematics
58 rdf:type schema:DefinedTerm
59 sg:journal.1040905 schema:issn 0924-090X
60 1573-269X
61 schema:name Nonlinear Dynamics
62 rdf:type schema:Periodical
63 sg:person.010637270167.51 schema:affiliation https://www.grid.ac/institutes/grid.425082.9
64 schema:familyName Gandzha
65 schema:givenName Ivan S.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637270167.51
67 rdf:type schema:Person
68 sg:person.0716737360.30 schema:affiliation https://www.grid.ac/institutes/grid.425082.9
69 schema:familyName Lukomsky
70 schema:givenName Vasyl P.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716737360.30
72 rdf:type schema:Person
73 sg:pub.10.1023/a:1008203813615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049616768
74 https://doi.org/10.1023/a:1008203813615
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1006/jsvi.1994.1192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022217238
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1006/jsvi.1995.0214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053231105
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1006/jsvi.1996.0442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001594232
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1006/jsvi.1996.0710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037313759
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0020-7462(86)90026-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035973055
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1017/s0022112074000802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053968512
87 rdf:type schema:CreativeWork
88 https://www.grid.ac/institutes/grid.425082.9 schema:alternateName Institute of Physics
89 schema:name Department of Theoretical Physics, Institute of Physics, National Academy of Sciences, Prospect Nauky 46, 03028, Kiev, Ukraine
90 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...